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Abstract

This paper introduces a decomposition of welfare assessments for general dynamic stochastic
economies with heterogeneous individuals. The decomposition is based on constructing individual,
dynamic, and stochastic weights that characterize how welfarist planners make tradeoffs
across individuals, dates, and histories. Guided by the compensation principle, it initially
decomposes a welfare assessment into an efficiency and a redistribution component, while the
efficiency component is further decomposed into i) aggregate efficiency, ii) risk-sharing, and iii)
intertemporal-sharing components. Five minimal examples and three applications illustrate the
properties of the decomposition and how it can be used to draw normative conclusions in specific
scenarios.
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1 Introduction

Assessing the aggregate welfare impact of policies or shocks in dynamic stochastic economies with
heterogeneous individuals and imperfect financial markets is far from trivial. In particular, it
is challenging to identify the specific normative considerations that underlie a particular welfare
assessment. This paper tackles this challenge by developing a decomposition of welfare assessments
based on individual, dynamic, and stochastic weights that satisfies desirable properties.

We introduce our results in a canonical dynamic stochastic environment in which heterogeneous
individuals consume a single good and supply a single factor (labor) at each history. We consider
welfare assessments for welfarist planners — those who use a social welfare function. Since
comparisons in utils are meaningless — due to the ordinal nature of individual utilities — we first
express welfare assessments in terms of normalized individual, dynamic, and stochastic weights, which
allow us to interpret how welfarist planners make tradeoffs across individuals, dates, and histories in
common units. To define such units, we select lifetime, date, and history welfare numeraires.

After expressing welfare assessments in comparable units, we show how to decompose a welfare
assessment into i) an efficiency component and ii) a redistribution component, as illustrated by
Figure 1. We treat as an axiom that the efficiency component of our decomposition must satisfy the
compensation principle (Boadway and Bruce, 1984; Feldman, 1998). That is, we want the efficiency
component to represent the net gain of the perturbation once the winners have hypothetically
compensated the losers if transfers were feasible and costless. Therefore, the efficiency component
of our decomposition necessarily corresponds to Kaldor-Hicks efficiency: it is the sum of individual
willingness-to-pay for the perturbation in units of the lifetime welfare numeraire. We show that there
is a unique decomposition in which a normalized welfare assessment can be expressed as the sum of a
component that satisfies the compensation principle (efficiency) and its complement (redistribution).
The redistribution component, which captures the equity concerns embedded in a particular social
welfare function, is positive when those individuals relatively favored in a perturbation are those
relatively preferred by the planner, i.e., have higher normalized individual weights.

We establish three properties of the efficiency/redistribution decomposition. First, the efficiency
component is identical for all welfarist planners, which implies that all differences in the assessments
of welfarist planners are due to redistribution considerations. Second, the efficiency component
is invariant to preference-preserving utility transformations, which implies that the impact of
preference-preserving utility transformations on welfare assessments is exclusively confined to the
redistribution component. Third, anything goes for the redistribution component. That is, there
are social welfare functions and preference-preserving utility transformations such that redistribution
can be positive or negative for the same perturbation.

By appealing once again to the compensation principle — now at each date and history —
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Figure 1: Welfare Decomposition

Note: This figure illustrates the decomposition of welfare assessments introduced in this paper. Proposition 1
introduces the efficiency/redistribution decomposition and Proposition 3 introduces the aggregate efficiency/risk-
sharing/intertemporal-sharing decomposition. See Propositions 2, 4, 5, 6, and 7 for properties.

we decompose efficiency gains into a component that captures changes in aggregate history welfare
gains (aggregate efficiency) and two components that capture the differential impact of a perturbation
towards individuals with different valuations across dates (intertemporal-sharing) and histories (risk-
sharing). For given welfare numeraires, this is the unique decomposition in which the efficiency
component can be expressed as the discounted sum — using aggregate time and stochastic discount
factors — of aggregate history welfare gains and its complement.

The differences in individual valuations across dates and histories that govern the risk-sharing
and intertemporal-sharing components depend on the extent to which individuals can freely smooth
consumption (in general, the history welfare numeraire) intertemporally and across histories. We
hence show that i) the risk-sharing and intertemporal-sharing components are zero when marginal
rates of substitution across all dates and histories are equalized across individuals — a condition
that complete markets economies satisfy — and ii) the intertemporal-sharing component is zero
when marginal rates of substitution across dates are equalized across individuals — a condition
satisfied when all individuals frictionlessly borrow and save.

More generally, we identify conditions on i) normalized weights and ii) welfare gains that
guarantee that the risk-sharing, intertemporal-sharing, or redistribution components are zero.
Intuitively, normalized weights and welfare gains must vary cross-sectionally along the relevant
dimensions for these three components to be non-zero. We also identify particular economies of
practical relevance in which specific components of the welfare decomposition are zero. We show
that i) single individual economies exclusively feature aggregate efficiency, ii) risk-sharing is zero
in perfect foresight economies, iii) intertemporal-sharing and redistribution are zero in economies
with ex-ante (but not necessarily ex-post) identical individuals, iv) risk- and intertemporal-sharing
are zero in static economies, v) aggregate efficiency is zero in single good endowment economies in
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which the aggregate endowment is fixed. We also characterize which particular components of the
welfare decomposition are zero when planners can costlessly and optimally transfer resources among
individuals along particular dimensions.

Five minimal examples and three applications of practical relevance illustrate the properties of
the decomposition and how it can be used to draw normative conclusions. Our first application
analyzes the welfare effects of a transfer policy that smooths consumption across individuals who
face idiosyncratic consumption risk. The central takeaway is that the persistence of the endowment
process determines whether welfare gains are attributed to risk-sharing, intertemporal-sharing, or
redistribution. Our results also highlight that a flat term structure of welfare assessments may mask
substantial time variation on each of component of the welfare decomposition, with backloaded risk-
sharing gains and frontloaded intertemporal-sharing and redistribution gains that turn into losses in
the long run.

Our second application contrasts the welfare effects of (linear) labor income taxes in two settings:
i) a deterministic environment in which individuals differ in their productivity at the time of the
welfare assessment, and ii) a stochastic environment in which individuals are identical at the time
of the welfare assessment, but experience different shocks. In both environments, increasing tax
rates causes aggregate efficiency losses by distorting labor supply. While both environments can be
parameterized to yield a quantitatively identical optimal tax, a utilitarian planner attributes the
welfare gains from the tax to redistribution in the deterministic environment and to risk-sharing in
the stochastic environment. Moreover, in the stochastic environment all welfarist planners agree on
the magnitude of the optimal tax, which is Pareto-improving in that case, while in the deterministic
environment the optimal tax is sensitive to the choice of social welfare function. This application
also illustrates that perturbations may yield efficiency gains even though aggregate consumption falls
at all times.

Our third application studies the welfare implications of a change in credit conditions in an
economy in which borrowing-constrained individuals make an investment decision. Considering
changes in the borrowing limit in this economy is a tractable perturbation that parameterizes changes
in the degree of market completeness. This application illustrates how relaxing a borrowing constraint
can feature at the same time i) positive aggregate efficiency and intertemporal-sharing components,
by allowing investors to invest more and by reallocating resources towards borrowing-constrained
individuals, and ii) a negative risk-sharing component, since investors end up bearing higher risk
by virtue of their increased investment. This application also illustrates how the redistributive
implications of a change in credit conditions can i) be traced back to pecuniary effects in competitive
economies and ii) vary depending on the level of the borrowing limit.

Finally, Section 5 briefly summarizes extensions and additional results covered in the Online
Appendix. There, we describe how to leverage the welfare decomposition to systematically construct
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non-welfarist welfare criteria based on individual, dynamic, and stochastic weights (DS-planners),
extend our approach to more general environments, and show how to further decompose the
components of the welfare decomposition, among other results.

Related Literature. This paper contributes to several literatures, including those on i) welfare
decompositions, ii) welfare evaluation in dynamic stochastic environments, iii) interpersonal welfare
comparisons, and iv) institutional mandates.

This paper is by no means the first to think of identifying or decomposing the contributions of
policy or parameter changes to social welfare. The seminal paper in this literature is Benabou (2002),
who proposes i) a measure of aggregate economic efficiency based on computing and aggregating
certainty-equivalent consumption levels, and ii) a new index of social welfare, which also accounts for
redistribution.1 Floden (2001) further advances this certainty-equivalent approach by decomposing
aggregate economic efficiency into welfare gains of increased levels and welfare gains of reduced
uncertainty. Variations and enhancements of this approach have been used in a variety of contexts,
for instance, by Seshadri and Yuki (2004), Conesa, Kitao and Krueger (2009), Koehne and Kuhn
(2015), Dyrda and Pedroni (2023), and Bhandari et al. (2021), among others.

While our decomposition shares the motivation for decomposing welfare gains with existing
decompositions — understanding the role of missing markets or equity concerns — there is no formal
relation between existing decompositions and ours, as implied by the properties of our decomposition
established in Section 3. We highlight such differences by contrasting our results mainly to those of
Bhandari et al. (2021), whose decomposition refines that of Benabou (2002) and Floden (2001), but
applies to environments with general preferences and social welfare functions. Bhandari et al. (2021)
decompose welfare changes into three components: a first component captures changes in aggregate
consumption, a second component (redistribution) captures changes in expected consumption shares,
and a third component (insurance) captures changes in the innovation to consumption shares. Their
first component may seem heuristically related to our aggregate efficiency component, the second
component to our redistribution component, and their third component to our paper’s risk-sharing
and intertemporal-sharing components. However, besides the resemblance in labels, there are no
formal similarities between the decompositions.

We highlight three significant differences. First and most importantly, the counterparts in
existing decompositions of our efficiency component are not invariant to preference-preserving
transformations. In an attempt to sidestep this issue, earlier work such as Benabou (2002) and
Floden (2001) restricts the scope of their decompositions to models in which all individuals have
identical utility functions. In later work, such as Bhandari et al. (2021), all three elements of

1As the measures of efficiency in Benabou (2002) and subsequent work differ from Kaldor-Hicks efficiency, our
efficiency and redistribution components necessarily differ from those in existing decompositions.
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their decomposition are sensitive to preference-preserving utility transformations or the choice of
social welfare function. This contrasts with the invariance result for the efficiency component (and
consequently the aggregate efficiency, risk-sharing, and intertemporal-sharing components) of our
decomposition. Second, the risk-sharing and intertemporal-sharing components in our decomposition
can only be non-zero when markets are incomplete, while existing decompositions would attribute
non-zero welfare gains to their insurance component in complete market or representative agent
economies. Finally, the properties for perturbations with specific consumption changes established
by Bhandari et al. (2021) neither imply nor are implied by the properties in Proposition 5a). This
partly occurs because Bhandari et al. (2021) consider proportional changes while Proposition 5a)
considers changes in levels. Section J of the Online Appendix further explains how our results relate
to existing work.

Our results most directly build on Alvarez and Jermann (2004)’s marginal reformulation of the
consumption-equivalent approach introduced by Lucas (1987). Their paper develops the use of
marginal methods to think about welfare assessments in the representative agent case, and our
results can be interpreted as generalizing their approach to the case with heterogeneous agents.
We show that our results nest those of Alvarez and Jermann (2004) in Section J.2 of the Online
Appendix.

The question of how to make interpersonal welfare comparisons to form aggregate welfare
assessments has a long history in economics — see, among many others, Kaldor (1939), Hicks (1939),
Bergson (1938), Samuelson (1947), Harsanyi (1955), Sen (1970) or, more recently, Kaplow and Shavell
(2001), Saez and Stantcheva (2016), Hendren (2020), Hendren and Sprung-Keyser (2020), and Schulz,
Tsyvinski and Werquin (2023). However, perhaps surprisingly, dynamic stochastic considerations
have not been central to this literature. By introducing normalized weights, our results provide a
new characterization of how welfarist planners make tradeoff across individuals, dates, and histories.

At last, by allowing for welfare criteria based not only on individual generalized weights, but also
dynamic and stochastic generalized weights, we generalize the work of Saez and Stantcheva (2016)
in Section J.1 of the Online Appendix. Those results open the door to future disciplined discussions
on policy-making mandates, for instance, by justifying and defining institutional mandates that
incorporate or disregard specific cross-sectional considerations, such as risk-sharing, intertemporal-
sharing, or redistribution.

2 Environment

Our notation closely follows that of Chapter 8 of Ljungqvist and Sargent (2018). We consider an
economy populated by a finite number I ≥ 1 of individuals, indexed by i ∈ I = {1, . . . , I}. At each
date t ∈ {0, . . . , T}, where 0 ≤ T ≤ ∞, there is a realization of a stochastic event st ∈ S. We denote
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the history of events up to date t by st = (s0, s1, . . . , st), and the probability of observing a particular
sequence of events st by πt

(
st
)
. The initial value of s0 is predetermined, so π0 (s0) = 1. At all dates

and histories, individuals consume a single good and supply a single factor, e.g. labor.

Preferences. An individual i derives utility from consumption and (dis)utility from factor supply,
with a lifetime utility representation given by

V i =
∑

t

(
βi
)t∑

st

πt

(
st
)
ui

t

(
ci

t

(
st
)
, ni

t

(
st
)

; st
)
, (Preferences) (1)

where ci
t

(
st
)

and ni
t

(
st
)

respectively denote the consumption and factor supply of individual i
at history st. We denote individual i’s instantaneous utility at history st by ui

t

(
·; st

)
, where

∂uit(st)
∂cit

:= ∂uit(cit(st),nit(st);st)
∂cit(st)

> 0 and ∂uit(st)
∂nit

:= ∂uit(cit(st),nit(st);st)
∂nit(st)

< 0, and where Inada conditions
apply to both consumption and factor supply. We denote individual i’s discount factor by βi ∈ [0, 1).
We refer to the unit of V i as individual i utils.

Equation (1) corresponds to the time-separable expected utility preferences with exponential
discounting and homogeneous beliefs widely used in macroeconomics and finance, augmented to allow
for time- and history-dependent individual-specific preferences. Section G of the Online Appendix
considers more general environments.

Perturbation. We assume that ci
t

(
st
)

and ni
t

(
st
)

are smooth functions of a perturbation parameter
θ ∈ [0, 1], so derivatives such as dcit(st)

dθ and dnit(st)
dθ are well-defined. A perturbation dθ may capture

changes in policies or any other primitive in a fully specified model. Typically, the mapping between
consumption and factor supply, ci

t

(
st
)

and ni
t

(
st
)
, and θ — which we take as given — emerges

endogenously and accounts for general equilibrium effects, as we illustrate in our applications.
However, our results do not require to further specify technologies, resource or budget constraints,
equilibrium notions, etc. Alternatively, a perturbation may capture changes in allocations directly
chosen by a planner.

Social Welfare Function. We study welfare assessments for welfarist planners, that is, planners
with a social welfare function given by

W = W
(
V 1, . . . , V i, . . . , V I

)
, (Social Welfare Function) (2)
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where individual lifetime utilities V i are defined in (1).2 We refer to the units of W as social utils.
In the body of the paper, we assume that ∂W

∂V i > 0, ∀i. Section G.5 of the Online Appendix allows
for ∂W

∂V i = 0 for some individuals and Section E considers non-welfarist welfare criteria.
A welfarist planner finds a perturbation dθ desirable (undesirable) if

dW

dθ
=
∑

i

∂W
∂V i

dV i

dθ
> (<) 0.

The welfarist approach is widely used because it is Paretian, that is, it concludes that every Pareto-
improving perturbation is desirable.3 However, because individual utilities are ordinal, understanding
how a welfarist planner makes tradeoffs in comparable units is not straightforward, as we show next.

3 Welfare Decomposition

In this section, we present the paper’s central result: a decomposition of welfare assessments for
welfarist planners that satisfies desirable properties.

3.1 Normalized Welfare Assessment

In order to introduce the decomposition, it is first necessary to understand how a welfarist
planner values welfare gains across individuals, dates, and histories. Since comparisons in utils
are meaningless — due to the ordinal nature of individual utilities — we choose comparable units
to express welfare gains. We refer to these units as lifetime, date, and history welfare numeraires.
Lemma 1 thus represents welfare assessments in terms of normalized welfare gains and normalized
weights. Normalized welfare gains represent lifetime, date, and history welfare gains for different
individuals in welfare numeraire units. Normalized weights capture how welfarist planners make
tradeoffs in such common units.

Goods or factors (or bundles of goods or factors) that can be easily transferred — at least
hypothetically — across individuals either privately or by a planner are natural welfare numeraires
since they justify the use of the compensation principle. See Propositions 1 and 3 for applications

2As in Boadway and Bruce (1984) or Kaplow (2011), we refer to the use of social welfare functions — typically
traced back to Bergson (1938) and Samuelson (1947) — as the welfarist approach. As explained in Kaplow (2011),
the critical restriction implied by the welfarist approach is that the social welfare function W (·) cannot depend on any
model outcomes besides individual utility levels. The utilitarian social welfare function, which adds up a (weighted)
sum of individual utilities, is the most used in practice. See Mas-Colell, Whinston and Green (1995), Kaplow (2011),
or Adler and Fleurbaey (2016) for descriptions of alternative social welfare functions.

3Kaplow and Shavell (2001) show that the converse statement — welfarism is the only approach that respects
the Pareto criterion — is true under minimal assumptions. A perturbation is strictly (weakly) Pareto-improving if
every individual i is strictly (weakly) better off after the change. Formally, a perturbation is strictly (weakly) Pareto-
improving when dV i

dθ
> (≥) 0, ∀i. Even though Pareto improvements are unambiguously desirable, they are rare in

economies with many individuals.
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of this principle. Therefore, in economies with a single consumption good like the one considered
here, it is natural to aggregate and compare welfare gains in consumption-equivalents. That is, it is
natural to choose a unit of the consumption good as the history welfare numeraire at each history
(history-st consumption), a unit of the consumption good at all histories at a given date as the date
welfare numeraire at each date (date-t consumption), and a unit of the consumption good at all
dates and histories as the lifetime welfare numeraire (perpetual consumption). Hence, to simplify
the exposition, we adopt such unit-consumption-based welfare numeraires in the body of the paper.
Section F of the Online Appendix considers general welfare numeraires.

Given the choice of unit-consumption-based welfare numeraires, Lemma 1 expresses welfare
assessments in terms of the inputs of the components of the welfare decomposition: normalized
lifetime, date, and history welfare gains, and normalized individual, dynamic, and stochastic weights.
In terms of notation, variables with a λ superindex are expressed in the appropriate numeraire.4

Lemma 1. (Normalized Welfare Gains and Normalized Weights) A normalized welfare assessment
for a welfarist planner can be represented as

dW λ

dθ
=

dW
dθ

1
I

∑
i

∂W
∂V i

∑
t (βi)t∑

st πt (st) ∂uit(st)
∂cit

=
∑

i

ωidV
i|λ

dθ
, (3)

where dV i|λ

dθ , dV
i|λ
t

dθ , and dV
i|λ
t (st)

dθ respectively denote lifetime, date, and history welfare gains, given
by

dV i|λ

dθ
=
∑

t

ωi
t

dV
i|λ

t

dθ
(Normalized Lifetime Welfare Gains) (4)

dV
i|λ

t

dθ
=
∑
st

ωi
t

(
st
) dV i|λ

t

(
st
)

dθ
(Normalized Date Welfare Gains) (5)

dV
i|λ

t

(
st
)

dθ
= dci

t

(
st
)

dθ
+

∂uit(st)
∂nit

∂uit(st)
∂cit

dni
t

(
st
)

dθ
. (Normalized History Welfare Gains) (6)

And ωi, ωi
t, and ωi

t

(
st
)

respectively denote normalized individual, dynamic, and stochastic weights,
4We use the superindex λ to denote normalized gains because in Section F of the Online Appendix we denote the

triple of normalizing factors (lifetime, date, and history) that allow for general welfare numeraires by λi, λit, and λit
(
st
)
.
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given by

ωi =
∂W
∂V i

∑
t

(
βi
)t∑

st πt
(
st
) ∂uit(st)

∂cit

1
I

∑
i

∂W
∂V i

∑
t (βi)t∑

st πt (st) ∂uit(st)
∂cit

(Normalized Individual Weight) (7)

ωi
t =

(
βi
)t∑

st πt
(
st
) ∂uit(st)

∂cit∑
t (βi)t∑

st πt (st) ∂uit(st)
∂cit

(Normalized Dynamic Weight) (8)

ωi
t

(
st
)

=
πt
(
st
) ∂uit(st)

∂cit∑
st πt (st) ∂uit(st)

∂cit

. (Normalized Stochastic Weight) (9)

Normalized lifetime welfare gains for individual i, dV i|λ

dθ , have the interpretation of i’s willingness-to-
pay for the perturbation in units of the lifetime welfare numeraire (a unit of perpetual consumption).
Normalized date welfare gains for individual i at date t, dV

i|λ
t

dθ , correspond to i’s willingness-to-pay
for the perturbation at date t in units of the date welfare numeraire (a unit of date-t consumption).
Normalized history welfare gains for individual i at history st, dV

i|λ
t (st)

dθ , correspond to i’s willingness-
to-pay for the perturbation at history st in units of the history welfare numeraire (a unit of history-st

consumption).
Normalized history welfare gains, dV

i|λ
t (st)

dθ , define a consumption-equivalent at a particular
history, while date and lifetime gains can be interpreted as time- and risk-discounted sums of
normalized history welfare gains. In fact, Lemma 1 shows that every welfare assessment can be
expressed as a triple weighted sum of normalized history welfare gains, since

dW λ

dθ
=
∑

i

ωi
∑

t

ωi
t

∑
st

ωi
t

(
st
) dV i|λ

t

(
st
)

dθ
.

Dividing dW
dθ by 1

I

∑
i

∂W
∂V i

∑
t

(
βi
)t∑

st πt
(
st
) ∂uit(st)

∂cit
ensures that the normalized welfare assessment

dWλ

dθ is expressed in units of the lifetime welfare numeraire, and that it can be interpreted in
terms of a perturbation that distributes perpetual consumption equally. That is, a normalized
welfare assessment of, for instance, dWλ

dθ = 3 is equivalent to a perturbation in which 3 units of
perpetual consumption are equally distributed across all individuals. Unnormalized and normalized
assessments, dW

dθ and dWλ

dθ , agree on whether a perturbation is desirable or not.
The normalized individual weight ωi defines how a welfarist planner trades off lifetime welfare

gains across individuals. For instance, if ωi = 1.3, a welfarist planner finds the welfare gain from
giving 1 unit of perpetual consumption to individual i equivalent to giving 1.3 units equally across
all individuals. Note that normalized individual weights average to one, so 1

I

∑
i ω

i = 1.
The normalized dynamic weight ωi

t defines a marginal rate of substitution between a unit of
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date-t consumption and a unit of perpetual consumption for individual i. For instance, if ωi
t = 0.1,

a welfarist planner finds the welfare gain from giving 1 unit of date-t consumption-equivalent to
individual i equivalent to giving 0.1 units of perpetual consumption to that individual. Since
perpetual consumption is a bundle of consumption at all dates, normalized dynamic weights add
up to one, defining a normalized discount factor, so

∑
t ω

i
t = 1, ∀i.

The normalized stochastic weight ωi
t

(
st
)

defines a marginal rate of substitution between a unit
of history-st consumption and a unit of date-t consumption for individual i. For instance, if
ωi

t

(
st
)

= 0.4, a welfarist planner finds the welfare gain from giving 1 unit of history-st consumption-
equivalent to individual i equivalent to giving 0.4 units of date-t consumption to that individual.
Normalized stochastic weights add up to one, so

∑
st ω

i
t

(
st
)

= 1, ∀t, ∀i, defining risk-neutral
probabilities.5

Through the lens of asset pricing, Lemma 1 implies that every welfare assessment corresponds to
a weighted sum of the values given by I individuals to claims to the normalized history welfare gains,
dV

i|λ
t (st)

dθ , which play the role of individual-specific payoffs. This is related to but different from the
literature on asset pricing with incomplete markets (Constantinides and Duffie, 1996; Krueger and
Lustig, 2010), which focuses on pricing claims in which payoffs are not individual-specific.

3.2 Efficiency vs. Redistribution

After expressing welfare assessments in comparable units, any decomposition of welfare assessments
corresponds to a particular grouping of the terms that define dWλ

dθ in Lemma 1. First, we seek to
decompose a normalized welfare assessment dWλ

dθ into an efficiency component ΞE and a redistribution
component ΞRD.

We will treat as an axiom that the efficiency component of our decomposition must satisfy the
compensation principle (Boadway and Bruce, 1984; Feldman, 1998). That is, we want ΞE to represent
the net gain in terms of the lifetime welfare numeraire once the winners of a perturbation have
hypothetically compensated the losers if transfers were feasible and costless. Therefore, the efficiency
component of our decomposition necessarily corresponds to Kaldor-Hicks efficiency (Kaldor, 1939;
Hicks, 1939) — defined as the sum of individual willingness-to-pay for the perturbation in units of
the lifetime welfare numeraire. Consequently, perturbations in which ΞE > 0 could be turned into
Pareto improvements if transfers were feasible and costless.

Proposition 1 shows that there is a unique way to decompose a normalized welfare assessment into
i) an efficiency component that satisfies the compensation principle by adding up normalized lifetime
welfare gains across individuals (Kaldor-Hicks efficiency), and ii) its complement, a redistribution
component, which captures the differential impact of a perturbation towards those individuals

5Risk-neutral probabilities are widely used in finance (Duffie, 2001; Cochrane, 2005), while normalized discount
factors are common in the study of repeated games (Fudenberg and Tirole, 1991; Mailath and Samuelson, 2006).
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preferred by the welfarist planner.

Proposition 1. (Efficiency/Redistribution Decomposition) A normalized welfare assessment for a
welfarist planner can be decomposed into efficiency and redistribution components, ΞE and ΞRD, as
follows:

dW λ

dθ︸ ︷︷ ︸
Welfare

Assessment

=
∑

i

ωidV
i|λ

dθ
=

∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE (Efficiency)

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸
ΞRD (Redistribution)

, (10)

where CovΣ
i [·, ·] = I · Covi [·, ·] denotes a cross-sectional covariance-sum among individuals. For

a given lifetime welfare numeraire, this is the unique decomposition in which a normalized welfare
assessment can be expressed as Kaldor-Hicks efficiency — that is, the unweighted sum of individual
willingness-to-pay, which satisfies the compensation principle — and its complement.

Proposition 1 implies that welfare assessments based on a social welfare function are equivalent to
relying on Kaldor-Hicks efficiency with a correction for redistribution. That is, this result shows
that maximizing a social welfare function is identical to maximizing Kaldor-Hicks efficiency with a
redistribution correction.

Two properties relate the efficiency component (equivalently, Kaldor-Hicks efficiency) and Pareto
efficiency, justifying our notion of efficiency based on the compensation principle. First, the efficiency
component is strictly positive (ΞE > 0) for (strict or weak) Pareto-improving perturbations.
Intuitively, since Pareto-improving perturbations feature no losers, the sum of willingness-to-pay
must be strictly positive. Second, Pareto optimal allocations — defined as those solving the Pareto
problem (Ljungqvist and Sargent, 2018) — must feature a weakly negative efficiency component
(ΞE ≤ 0) for any feasible perturbation given endowments and technologies, as shown in Section I.1
of the Online Appendix.6 This property ensures that the efficiency component of our decomposition
cannot be positive by reallocating resources away from a Pareto optimal allocation.7

The redistribution component — which can equivalently be expressed as ΞRD =
∑

i

(
ωi − 1

)
dV i|λ

dθ

— captures the equity concerns embedded in a particular social welfare function. ΞRD is positive
when the individuals relatively favored in a perturbation are those relatively preferred by the planner,
i.e., have higher normalized individual weights ωi, as we illustrate in Examples 1 and 2 below.

3.2.1 Properties of Efficiency/Redistribution Decomposition

In addition to the properties of Kaldor-Hicks efficiency already discussed, Proposition 2 presents
three properties of the efficiency/redistribution decomposition just introduced that further justify

6Perturbations that increase good or factor endowments or improve technologies can be Pareto improvements over
allocations that were originally Pareto efficient given the initial endowments and technologies.

7The critical feature of the Pareto problem is the presence of linear resource constraints, which allow for costless
transfers. In general, it is possible to find perturbations of constrained Pareto efficient allocations such that ΞE > 0.
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the choice of labels for each component.

Proposition 2. (Properties of Efficiency/Redistribution Decomposition)

a) (Invariance of efficiency component to social welfare function) The efficiency component is
identical for all welfarist planners. Differences in welfare assessments among welfarist planners
are exclusively due to the redistribution component.

b) (Invariance of efficiency component to preference-preserving utility transformations) The
efficiency component is invariant to i) monotonically increasing transformations of individuals’
lifetime utilities and ii) positive affine (increasing linear) transformations of individuals’
instantaneous utilities.

c) (Anything goes for redistribution) Whenever I > 1, there exist social welfare functions and
preference-preserving utility transformations such that i) ΞRD > 0 and ii) ΞRD < 0 for any
perturbation in which dV i|λ ̸= 0 for at least one individual.

Proposition 2a) follows from the fact that normalized lifetime utilities dV i|λ

dθ do not depend on the
choice of SWF ; only the normalized individual weights ωi do. This property implies that welfarist
planners cannot disagree about the efficiency consequences of a perturbation. The reason why
different welfarist planners make different welfare assessments is simply because they use different
normalized individual weights, implying different social preferences for redistribution.

Proposition 2b) follows from the fact that normalized lifetime utilities dV i|λ

dθ — with units
lifetime welfare numeraire

units of θ — do not depend on the choice of individual utility units. This property
implies that even though welfarist planners mechanically overweight welfare gains by individuals
whose lifetime (instantaneous) utility experiences a monotonically increasing (positive affine)
transformation (Campbell, 2018) — even though this has no impact on allocations — this
only impacts the redistribution component.8 Hence, the impact of preference-preserving utility
transformations on welfare assessments is exclusively confined to the redistribution component.

Proposition 2c) highlights that as long as one individual does relatively better than another, it
is possible to select individual weights ωi (by varying the social welfare function or the formulations
of individual utilities) so that CovΣ

i

[
ωi, dV i|λ

dθ

]
is positive or negative for a given perturbation. For

instance, ΞRD can be negative for Pareto-improving perturbations, even though ΞE + ΞRD > 0 in
that case since welfarist planners are Paretian, as we illustrate next.

3.2.2 Illustration of Efficiency/Redistribution Decomposition

Here, we present two minimal examples that illustrate the Efficiency/Redistribution Decomposition.
These examples show how the redistribution term can have different signs for the same perturbation

8The invariance to positive affine transformations is only meaningful with expected utility preferences.
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depending on the choice of social welfare function and utility units for purely redistributive
perturbations (Example 1) and for Pareto-improving perturbations (Example 2).

Example 1. [ΞE = 0 but ΞRD ⋛ 0]. Consider a static deterministic economy with two
individuals (I = 2), each endowed with one unit of consumption, with preferences ui

(
ci
)
. Consider

a perturbation that transfers θ units of consumption from A to B according to

cA = 1 + θ and cB = 1 − θ.

This perturbation can be interpreted as a redistributive policy. Using consumption as numeraire, it
trivially follows that ΞE =

∑
i

dV i|λ

dθ =
∑

i
dci

dθ = 0, so the welfare assessment of this perturbation is
exclusively driven by ΞRD. In this perturbation, A gains and B loses since

dV A|λ

dθ
> 0 > dV B|λ

dθ
.

Assuming a utilitarian social welfare function with Pareto weights given by αi, the value
of the redistribution component can be positive, negative, or zero, depending on ωi =
αi ∂ui(ci)

∂ci
/1

I

∑
i α

i ∂ui(ci)
∂ci

. If the individual weight for individual A is higher than for B, ωA > ωB,
and ΞRD > 0. If instead ωA < ωB, then ΞRD < 0.

Example 2. [Pareto Improvement with ΞRD ⋛ 0]. Consider the same static deterministic
economy as in Example 1. Consider now a perturbation that increases the consumption of both A

and B according to
cA = 1 + 2θ and cB = 1 + θ.

This perturbation can be interpreted as a positive technology shock that favors some individuals
more than others. It trivially follows that ΞE =

∑
i

dV i|λ

dθ = 3 > 0. In this case, all individuals gain
from the perturbation since

dV A|λ

dθ
>
dV B|λ

dθ
> 0,

so this perturbation is a Pareto improvement. Assuming a utilitarian social welfare function with
Pareto weights given by αi, the value of the redistribution component can be positive, negative, or
zero, depending once again on ωi. If the individual weight for individual A is higher than for B,
ωA > ωB, and ΞRD > 0. If instead ωA < ωB, then ΞRD < 0.

3.3 Aggregate Efficiency vs. Risk-Sharing vs. Intertemporal-Sharing

Proposition 1 implies that the efficiency component of a normalized welfare assessment is simply
the sum of discounted individual welfare gains using individual discount factors — captured by
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normalized dynamic and stochastic weights. Hence, every decomposition of the efficiency component
necessarily corresponds to a particular grouping of the weighted sum

ΞE =
∑

i

∑
t

∑
st

ωi
tω

i
t

(
st
) dV i|λ

t

(
st
)

dθ
.

If all individuals value welfare gains over time and across histories equally, then efficiency simply
corresponds to the discounted value — using the common discount factor — of aggregate history
welfare gains

∑
i

dV
i|λ
t (st)

dθ . In general, when individuals have different valuations, Proposition
3 decomposes efficiency gains into an aggregate efficiency component, which corresponds to the
discounted value of aggregate history welfare gains

∑
i

dV
i|λ
t (st)

dθ using common time and stochastic
discount factors, and two components, intertemporal-sharing and risk-sharing, which respectively
capture the differential impact of a perturbation towards individuals with different valuations over
dates or histories.9

Proposition 3. (Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing Decomposition) The
efficiency component of a normalized welfare assessment can be decomposed into aggregate efficiency,
risk-sharing, and intertemporal-sharing components, ΞAE, ΞRS, and ΞIS, as follows:

ΞE︸︷︷︸
Efficiency

=
∑

t

ωt

∑
st

ωt

(
st
)∑

i

dV
i|λ

t

(
st
)

dθ︸ ︷︷ ︸
ΞAE (Aggregate Efficiency)

+
∑

t

ωt

∑
st

ωt

(
st
)
CovΣ

i

[
ωi

t

(
st
)

ωt (st) ,
dV

i|λ
t

(
st
)

dθ

]
︸ ︷︷ ︸

ΞRS (Risk-Sharing)

(11)

+
∑

t

ωtCovΣ
i

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸
ΞIS (Intertemporal-Sharing)

,

where the averages of normalized weights ωt = 1
I

∑
i ω

i
t and ωt

(
st
)

= 1
I

∑
i ω

i
t

(
st
)

define aggregate
time and stochastic discount factors, and where CovΣ

i [·, ·] = I · CovΣ
i [·, ·] denotes a cross-sectional

covariance-sum among individuals.

The justification for this decomposition is once again based on the compensation principle, now
applied over dates and histories. The sum of normalized date welfare gains at date t,

∑
i

dV
i|λ
t

dθ ,
corresponds to the aggregate willingness-to-pay for the impact of the perturbation at that date in
units of the date welfare numeraire (a unit of date-t consumption). Hence, when

∑
i

dV
i|λ
t

dθ > 0, the
winners of the perturbation at date t could hypothetically compensate the losers in terms of the date
welfare numeraire at that date. The aggregate time discount factor that makes it possible to add up

9By choosing the label risk-sharing and coining the (less conventional) label intertemporal-sharing, we seek to
highlight the cross-sectional nature of both components. Terms such as insurance, consumption smoothing, or
intertemporal smoothing do not necessarily have a cross-sectional connotation since they can be applied to a single
individual.
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aggregate gains across different dates, by expressing them in units of the lifetime welfare numeraire,
is ωt = 1

I

∑
i ω

i
t.

Therefore, the unique way to decompose ΞE into a component that corresponds to the discounted
sum — using an aggregate discount factor — of the aggregate willingness-to-pay for the perturbation
at each date and its complement is

ΞE =
∑

i

∑
t

ωi
t

dV
i|λ

t

dθ
=
∑

t

ωt

∑
i

dV
i|λ

t

dθ︸ ︷︷ ︸
ΞAE+ΞRS

+
∑

t

ωtCovΣ
i

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸

ΞIS

. (12)

The intertemporal-sharing component — which can equivalently be expressed as ΞIS =∑
t ωt

∑
i

(
ωit
ωt

− 1
)

dV
i|λ
t

dθ — captures the contribution to efficiency due to differences in valuation
over time across individuals. The date-t element of ΞIS is positive when a perturbation relatively
favors individuals with a higher relative valuation (dynamic weight) for date t, and vice versa.

The same logic applies to decomposing aggregate normalized date welfare gains at date t,

∑
i

dV
i|λ

t

dθ
=
∑

i

∑
st

ωi
t

(
st
) dV i|λ

t (st)
dθ

=
∑
st

ωt

(
st
)∑

i

dV
i|λ

t (st)
dθ

+
∑
st

ωt

(
st
)
CovΣ

i

[
ωi

t (st)
ωt (st) ,

dV
i|λ

t (st)
dθ

]
.

The sum of normalized history welfare gains at history st,
∑

i
dV

i|λ
t (st)

dθ , corresponds to the aggregate
willingness-to-pay for the impact of the perturbation at that history in units of the history welfare
numeraire (a unit of history-st consumption). Hence, when

∑
i

dV
i|λ
t (st)

dθ > 0, the winners of the
perturbation at history st could hypothetically compensate the losers in terms of the history welfare
numeraire at that history. The aggregate stochastic discount factor that makes it possible to add
up aggregate gains across different histories at a given date, by expressing them in units of the date
welfare numeraire, is ωt

(
st
)

= 1
I

∑
i ω

i
t

(
st
)
.

Therefore, Proposition 3 is the unique decomposition in which the efficiency component can
be expressed as the discounted sum — using aggregate time and stochastic discount factors — of
aggregate history welfare gains, ΞAE , and its complement, ΞRS +ΞIS .10 The risk-sharing component
— which can equivalently be expressed as ΞRS =

∑
t ωt

∑
st ωt

(
st
)∑

i

(
ωit(st)
ωt(st) − 1

)
dV

i|λ
t (st)

dθ —
captures the contribution to efficiency due to differences in valuation over histories across individuals.
The history-st element of ΞRS is positive when a perturbation relatively favors individuals with a
higher relative valuation (stochastic weight) for history st, and vice versa. In Section H of the Online
Appendix, we discuss alternative subdecompositions for the risk-sharing and intertemporal-sharing
components.

By construction, the aggregate efficiency component is exclusively a function of aggregate
10We adopt the label aggregate efficiency because ΞAE is the subcomponent of efficiency that uses “aggregate” time

and stochastic discount factors to discount “aggregate” history welfare gains.
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history welfare gains, while the risk-sharing and intertemporal-sharing components depend on how
history welfare gains accrue to individuals with different valuations for particular dates or histories.
Importantly, for ΞAE to be non-zero, it must be that a perturbation changes aggregate history welfare
gains at particular dates and histories — see Proposition 4c) below. In Section H of the Appendix,
we show how it is possible to subdecompose aggregate efficiency into a component that captures
improved smoothing of aggregate history welfare gains — this is the single force behind the cost-of-
business-cycles computation in Lucas (1987) — and a component that captures changes in expected
aggregate history welfare gains.

3.3.1 Properties of Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing
Decomposition

The differences in normalized dynamic and stochastic weights that govern the risk-sharing and
intertemporal-sharing components depend on the extent to which individuals can freely smooth
consumption across dates and histories. In Proposition 4, we show that i) risk-sharing and
intertemporal-sharing are zero when individual marginal rates of substitution across all dates and
histories are equalized (which occurs when markets are complete) and ii) intertemporal-sharing is
zero when marginal rates of substitution across dates are equalized across agents (which occurs when
all individuals frictionlessly borrow and save).11

Proposition 4. (Properties of Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing
Decomposition)

a) (Complete markets) When marginal rates of substitution across all dates and histories are
equalized across individuals — a condition that complete markets economies satisfy — the risk-
sharing and intertemporal-sharing components are zero: ΞRS = ΞIS = 0.

b) (Frictionless borrowing and saving) When marginal rates of substitution across dates are
equalized across individuals — a condition satisfied when all individuals frictionlessly borrow
and save — the intertemporal-sharing component is zero: ΞIS = 0.

c) (Zero aggregate normalized history welfare gains) When a perturbation features zero aggregate
normalized history welfare gains at all dates and histories, the aggregate efficiency component
is zero: ΞAE = 0.

Proposition 4a) and 4b) follow from the fact that complete markets ensure that individual valuations
across dates and histories are identical, while frictionless borrowing and saving do the same exclusively

11It follows from Proposition 2 that each of ΞAE , ΞRS , and ΞIS are identical for all welfarist planners and invariant
to preference-preserving utility transformations.
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across dates. Intuitively, normalized dynamic and stochastic weights can be expressed in terms of
state-prices as follows:

ωi
t

(
st
)

= qi
t

(
st
)∑

st q
i
t (st)

and ωi
t =

∑
st q

i
t

(
st
)∑

t

∑
st q

i
t (st)

, (13)

where qi
t

(
st
)

=
(
βi
)t
πt
(
st
) ∂ui(st)

∂cit
/

∂ui(s0)
∂ci0

denotes individual i’s (shadow) date-0 state-price over
history st. When markets are complete, all valuations are equalized, so qi

t = qt, ∀i, which implies
that ωi

t = ωt and ωi
t

(
st
)

= ωt
(
st
)
. Hence, in this case, welfare assessments are exclusively driven

by aggregate efficiency and redistribution. Under frictionless borrowing and saving, the valuation of
zero-coupon bonds is equalized, so

∑
st q

i
t

(
st
)

=
∑

st qt
(
st
)
, which implies that ωi

t = ωt. Proposition
4 also implies that the good/factor on which financial claims are written (e.g., the consumption good
or, more generally, a nominal numeraire) is a natural history welfare numeraire. Proposition 4c)
shows that the aggregate efficiency component can only take non-zero values for perturbations in
which aggregate normalized history welfare gains are non-zero.

Finally, even though — as explained above — the efficiency component is strictly positive for
every Pareto-improving perturbation, one or two of the three components of the decomposition of
the efficiency component introduced in Proposition 3 may be negative. That is, Pareto efficiency
exclusively requires that the sum of the aggregate efficiency, risk-sharing, and intertemporal-sharing
components is positive, so ΞE = ΞAE + ΞRS + ΞIS > 0, but not each of them. Example 5 below and
Application 2 in Section 4 illustrate this possibility in two different scenarios.

3.3.2 Illustration of Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing
Decomposition

Here, we present three minimal examples that illustrate the Aggregate Efficiency/Risk-
Sharing/Intertemporal-Sharing Decomposition. Example 3 illustrates the difference between ΞAE

and ΞIS , while Example 4 illustrates the difference between ΞAE and ΞRS . Example 5 shows how it
is possible to find Pareto-improving perturbations in perfect foresight economies in which ΞAE < 0,
but ΞIS > 0. All three examples are designed to feature ΞRD = 0, regardless of the choice of social
welfare function.

Example 3. [Aggregate Efficiency vs. Intertemporal-Sharing]. This example contrasts two
different economies. First, consider a two-date perfect foresight economy with two individuals (I = 2)
with preferences V i = u

(
ci

0
)
+u

(
ci

1
)
. Consider a perturbation that smoothes individual consumption

across dates by smoothing aggregate consumption, as follows:

ci
0 = 3 − θ and ci

1 = 1 + θ, ∀i.
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In this case, the welfare gains from varying θ are exclusively due to aggregate efficiency. Aggregate
consumption in this example is 2 × (3 − θ) at date 0 and 2 × (1 + θ) at date 1, so the perturbation
changes aggregate date welfare gains at both dates. Formally, ΞE = ΞAE > 0, while ΞRS = ΞIS = 0.

Second, consider a different two-date perfect foresight economy with two individuals (I = 2)
with preferences V i = u

(
ci

0
)

+ u
(
ci

1
)
. Consider instead a perturbation that smoothes individual

consumption across dates by reshuffling consumption within each date but without changing
aggregate consumption, as follows:

c1
0 = 3 − θ c2

0 = 1 + θ

c1
1 = 1 + θ c2

1 = 3 − θ.

In this case, the welfare gains from varying θ are exclusively due to intertemporal-sharing. Aggregate
consumption in this example is 4 at both dates 0 and 1, so the perturbation does not change aggregate
date welfare gains. Formally, ΞE = ΞIS > 0, while ΞAE = ΞRS = 0.

In the first economy, the aggregate willingness to pay for the perturbation (compensation
principle) is negative at date 0 and positive at date 1, and the discounted value, using a common
discount factor, makes ΞAE > 0. Since individuals have the same valuation for consumption at
both dates, ΞIS = 0. In the second economy, the aggregate willingness to pay for the perturbation
(compensation principle) is zero at both dates, so ΞAE = 0. Since individuals have different valuation
for consumption at both dates, and the perturbation transfers resources from those who value
consumption less to more at each date, ΞIS > 0. This is precisely what the decomposition is
designed to achieve.

Example 4. [Aggregate Efficiency vs. Risk-Sharing]. This example contrasts two different
economies with risk. First, consider a single-date economy with two equally probable states s ∈ {1, 2}
and two individuals (I = 2) with preferences V i =

∑
s π (s)u

(
ci (s)

)
. Consider a perturbation that

smoothes individual consumption across dates by smoothing aggregate consumption, as follows:

ci (1) = 3 − θ and ci (2) = 1 + θ, ∀i.

In this case, the welfare gains from varying θ are exclusively due to aggregate efficiency. Aggregate
consumption in this example is 2 × (3 − θ) in state 1 and 2 × (1 + θ) in state 2, so the perturbation
changes aggregate history welfare gains in both states. Formally, ΞE = ΞAE > 0, while ΞRS = ΞIS =
0.

Second, consider a different single-date economy with two equally probable states s ∈ {1, 2} and
two individuals (I = 2) with preferences V i =

∑
s π (s)u

(
ci (s)

)
. Consider instead a perturbation

that smoothes individual consumption across states by reshuffling consumption within each state
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but without changing aggregate consumption, as follows:

c1 (1) = 3 − θ c2 (1) = 1 + θ

c1 (2) = 1 + θ c2 (2) = 3 − θ.

In this case, the welfare gains from varying θ are exclusively due to risk-sharing. Aggregate
consumption in this example is 4 in both states, so the perturbation does not change aggregate
history welfare gains. Formally, ΞE = ΞRS > 0, while ΞAE = ΞIS = 0.

In the first economy, the aggregate willingness to pay for the perturbation (compensation
principle) is negative in state 1 and positive in state 2, and its risk-adjusted value, using a
common stochastic discount factor, makes ΞAE > 0. Since individuals have the same valuation
for consumption in both states, ΞRS = 0. In the second economy, the aggregate willingness to pay
for the perturbation (compensation principle) is zero at both states, so ΞAE = 0. Since individuals
have different valuation for consumption at both states, and the perturbation transfers resources
from those who value consumption less to more at each state, ΞRS > 0. This is precisely what the
decomposition is designed to achieve.

Example 5. [Pareto Improvement with ΞE > 0, ΞAE < 0, and ΞIS > 0]. At last, we consider
a different perturbation to the two-individual two-date perfect foresight economy from Example 3.
This alternative perturbation preserves the smoothing of consumption across individuals but also
features a permanent aggregate consumption loss, modulated by a parameter α ≥ 0. This loss could
represent, for instance, aggregate technology regress. Formally, individual consumption is given by

c1
0 = 3 − θ − αθ c2

0 = 1 + θ − αθ

c1
1 = 1 + θ − αθ c2

1 = 3 − θ − αθ.

In this case, the logic from Example 3 applies unchanged, so ΞIS > 0. However, whenever α > 0,
aggregate consumption falls at both dates, and consequently ΞAE < 0. It should be evident that
whenever α is sufficiently small, a marginal increase in θ starting from θ = 0 is a Pareto-improving
perturbation that features ΞE = ΞAE +ΞIS > 0 with ΞAE < 0 and ΞIS > 0. This example illustrates
that the efficiency component may be positive for perturbations in which aggregate consumption goes
down at all dates, provided that the gains from reallocating consumption from individuals with low
to high normalized dynamic weights are sufficiently large.
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3.4 Additional Properties

In the remainder of this section, we present additional properties of the welfare decomposition
introduced in Propositions 1 and 3.12 Proposition 5 identifies conditions on i) normalized weights
and ii) welfare gains that respectively guarantee that ΞRS , ΞIS , or ΞRD are zero.

Proposition 5. (Properties of Welfare Decomposition: Individual-Invariant Weights or Welfare
Gains)

a) (Individual-invariant normalized weights) If normalized stochastic weights are constant across
individuals at all dates and histories, then ΞRS = 0. If normalized dynamic weights are constant
across individuals at all dates, then ΞIS = 0. If normalized individual weights are constant
across individuals, then ΞRD = 0.

b) (Individual-invariant welfare gains) If history welfare gains dV
i|λ
t (st)

dθ are identical across

individuals at all histories, then ΞRS = 0. If risk-adjusted history welfare gains dV
i|λ
t

dθ are
identical across individual at all dates, then ΞIS = 0. If lifetime welfare gains are identical
across individuals, then ΞRD = 0.

Proposition 5a) shows that invariance of normalized weights across specific dimensions —
individual, dynamic, stochastic — implies that redistribution, intertemporal-sharing, and risk-
sharing components are respectively zero. This result highlights the cross-sectional nature of
these three components, in contrast to aggregate efficiency. Proposition 5b) shows that particular
components of the welfare decomposition are zero when perturbations impact all individuals
identically at each history, date, or on a lifetime basis.

Proposition 6 identifies which components of the welfare decomposition are zero in particular
economies of practical relevance. This result further justifies the labels for the different components
of the decomposition and is useful to quickly determine which components of the decomposition are
inactive in specific applications.

Proposition 6. (Properties of Welfare Decomposition: Particular Economies)

a) (Single individual economies) In single individual (I = 1) economies: ΞRS = ΞIS = ΞRD = 0.

b) (Perfect foresight economies) In perfect foresight economies: ΞRS = 0.

c) (Economies with ex-ante identical individuals) In economies with ex-ante (but not necessarily
ex-post) identical individuals: ΞIS = ΞRD = 0.

12Lemma 1 already implies that normalized individual, dynamic, and stochastic weights and normalized history
welfare gains are sufficient statistics to make normalized welfare assessments. These are also the inputs of the different
components of the welfare decomposition, making their computation conceptually straightforward.
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d) (Static economies) In static (T = 0) economies: ΞRS = ΞIS = 0.

e) (Single good endowment economies) In single good endowment economies in which the aggregate
endowment is invariant to the perturbation: ΞAE = 0.

Even though the welfare decomposition is based on the compensation principle, which is
formulated in terms of hypothetical transfers between winners and losers, no transfers of resources
need to take place for the decomposition to be valid. The decomposition is simply a valuation
exercise. That said, in economies in which planners can costlessly and optimally implement
transfers of resources among individuals along particular dimensions, Proposition 7 characterizes
which components of the welfare decomposition are zero.

Proposition 7. (Properties of Welfare Decomposition: Transfers)

a) (Lifetime transfers) If a planner can costlessly and optimally transfer the lifetime welfare
numeraire across individuals, then ΞRD = 0.

b) (Date transfers) If a planner can costlessly and optimally transfer the date welfare numeraire
across individuals at all dates, then ΞIS = ΞRD = 0.

c) (History transfers) If a planner can costlessly and optimally transfer the history welfare
numeraire across individuals at all histories, then ΞRS = ΞIS = ΞRD = 0.

We conclude this section with three remarks.

Remark 1. (Connection to policy instruments) Proposition 7 highlights the connection between the
different components of the welfare decomposition and how specific policy instruments may come
into play to generate welfare gains. For instance, perturbations that feature positive redistribution
components imply that policies that transfer the lifetime welfare numeraire across individuals can
generate welfare gains. Similarly, perturbations with positive intertemporal-sharing and risk-sharing
components imply that policies that transfer date and history welfare numeraires across individuals
can also generate welfare gains. The applications studied in Section 4 illustrate this logic further.

Remark 2. (Welfare decomposition does not rely on optimality) It is worth highlighting that the
welfare decomposition does not rely on individual optimality (i.e., the envelope theorem). The
decomposition is exclusively a function of preferences and the considered perturbation. In specific
applications, exploiting individual optimality conditions along with budget and resource constraints
can simplify the characterization of the components of the decomposition, as the applications in
Section 4 illustrate.
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Remark 3. (Term structure) Welfare assessments as well as each of the components of the welfare
decomposition have a term structure of the form

dW λ

dθ
=
∑

t

ωt
dW λ

t

dθ
where dW λ

t

dθ
= ΞAE

t + ΞRS
t + ΞIS

t + ΞRD
t , (14)

as we illustrate in Application 1 in Section 4. This structure can be used to compute transition and
steady-state welfare gains, and can be refined to define a stochastic structure of welfare gains, as we
explain in Section H.1 of the Online Appendix.

4 Applications

In this section, we illustrate how the welfare decomposition introduced in this paper can be used
to draw normative conclusions in three scenarios of practical relevance. Table 1 illustrates which
components of the welfare decomposition are non-zero in each application.

Table 1: Summary of Applications

# Application ΞAE ΞRS ΞIS ΞRD

1 Consumption Smoothing = 0 ✓ ✓ ✓
2 Labor Income Taxation (deterministic) ✓ = 0 = 0 ✓
2 Labor Income Taxation (stochastic) ✓ ✓ = 0 = 0
3 Credit Constraint Relaxation ✓ ✓ ✓ ✓

Note: This table illustrates which components of the welfare decomposition are non-zero in each of the applications.

4.1 Application 1: Consumption Smoothing

This application analyzes the welfare effects of a transfer policy that perfectly smooths consumption
across individuals who face idiosyncratic consumption risk. The central takeaway is that the
persistence of the endowment process determines whether the welfare gains from the transfer policy
are attributed to risk-sharing, intertemporal-sharing, or redistribution.

4.1.1 Environment

We consider an infinite-horizon economy with two individuals, i ∈ {1, 2}, with identical preferences.
We formulate preferences recursively as

V i (s) = u
(
ci (s)

)
+ β

∑
s′

π
(
s′|s

)
V i (s′) , where u (c) = c1−γ

1 − γ
,
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where V i (s) and ci (s) respectively denote the lifetime utility and the consumption of individual i in
a given state s; s and s′ denote possible states, and π (s′|s) denotes Markov transition probabilities;
β is a discount factor, and u (c) denotes the instantaneous utility function.

There is a single nonstorable consumption good. We consider an extreme form of incomplete
markets: no financial markets. So individual consumption in state s is given by

ci (s) = yi (s) + θT i (s) , (15)

where yi (s) denotes individual i’s endowment of the good and T i (s) denotes the transfer policy,
scaled by a parameter θ ∈ [0, 1]. Uncertainty follows a two-state Markov chain. We denote states
by s = {L,H}, standing for low (L) and high (H) realizations of individual 1’s endowments, y1 (s) .
The transition matrix is given by

Π =

 ρ 1 − ρ

1 − ρ ρ

 ,
where ρ ∈ [0, 1] captures the persistence of the endowment process. To ensure risk is idiosyncratic,
we assume that y1 (s) = y + ε (s) and y2 (s) = y − ε (s), where y > 0, and where ε (L) = −ε (H).
We consider the welfare assessment of a transfer policy that fully smooths consumption. By setting
T 1 (s) = −ε (s) and T 2 (s) = ε (s), individual consumption takes the form

c1 (s) = y + ε (s) (1 − θ) and c2 (s) = y − ε (s) (1 − θ) .

By varying θ between 0 and 1, this economy transitions from autarky to perfect consumption
smoothing. We consider an equal-weighted utilitarian social welfare function, so W

(
V 1, V 2) =

V 1 + V 2, and adopt unit-consumption-based welfare numeraires. Our benchmark parameterization
assumes β = 0.95, y = 1, ε (H) = 0.25, ε (L) = −0.25, γ = 2, and ρ = 0.975.

4.1.2 Results

Normalized Weights. Figure 2 shows normalized dynamic and stochastic weights — defined in
Lemma 1 — when θ = 0.25. Several insights emerge.

First, individuals with an initially low endowment (and high marginal utility) value welfare
gains in early periods relatively more than in later periods. And since dynamic weights add up
to 1 over time, dynamic weights for different individuals necessarily intersect. Second, stochastic
weights show time-dependence despite the stationarity of the model because shocks are persistent.
The persistence of the endowment process explains why individuals value early welfare gains more,
although the impact of the initial state eventually dissipates. In the long run, individuals value
welfare gains more (less) in states with low (high) consumption, as expected. Finally, a normalized
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Figure 2: Normalized Weights (Application 1)

Note: This figure shows normalized weights for individual 1 when θ = 0.25. The left panel shows the dynamic weight,
ωit, as a function of time when for different initial states s0 = {H, L}. For reference, it also shows the dynamic weight
for a risk-neutral individual, given by (1 − β) βt = βt/

∑
t
βt. The right panel shows the stochastic weights ωit

(
st
)

as a function of time for different initial and final states, s0 = {H, L} and st = {H, L}. The individual weights are
ω1 (s0 = L) = 1.186 and ω1 (s0 = H) = 0.814. Since the model is symmetric, normalized weights for individual 2 can
be read off the weights for individual 1 switching the initial state.

utilitarian planner values lifetime welfare gains for the low endowment individual at the time of the
assessment at roughly 46% more than for the high endowment individual, since

ω1

ω2 = 1.186
0.814 ≈ 1.46, when s0 = L.

Welfare Decomposition. Figure 3 shows the welfare decomposition for three different
parameterizations: ρ = {0.5, 0.975, 0.999} when s0 = L; welfare assessments are identical when
s0 = H.13

This application illustrates how the persistence of endowment shocks changes the relative
importance of each of the components of the welfare decomposition. When shocks are transitory (ρ =
0.5), risk-sharing dominates, with intertemporal-sharing playing a smaller role and redistribution
being virtually zero. When shocks are persistent (ρ = 0.975), welfare gains are partly attributed to
redistribution, which is larger than intertemporal-sharing, although risk-sharing is still the dominant
component. When shocks are virtually permanent (ρ = 0.999), redistribution dominates, with risk-
sharing and intertemporal-sharing playing a much smaller role. This application is constructed so
that the normalized welfare assessment dWλ

t
dθ is invariant to the level of persistence ρ, underscoring

13If the model featured a state in which individuals are identical, the welfare decomposition at that state would be
significantly different. Proposition 5 implies that ΞIS = ΞRD = 0 in that case, so every welfare assessment would
exclusively be due to risk-sharing. This fact underscores that the decomposition of welfare assessments critically
depends on the state in which an assessment takes place.
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shifts in the relative contribution of each of the components of the decomposition. Despite the overall
invariance of the welfare assessments, it is important to highlight that knowing the contribution of
each component is relevant to determine the precise underlying frictions and which specific policy
instruments may generate welfare gains, as described in Remark 1.

We make four additional observations. First, since this is a single good endowment economy
in which transfers cancel out in the aggregate, Proposition 6 implies that ΞAE = 0. Second, the
optimal policy for a utilitarian planner features perfect consumption smoothing (θ⋆ = 1). This
application is constructed so that the three non-zero components (risk-sharing, intertemporal-sharing,
and redistribution) independently conclude that perfect smoothing is optimal. Hence, in practice,
the rationale justifying such a policy can significantly differ depending on primitives. Third, as shown
in the bottom right panel of Figure 3, intertemporal-sharing is hump-shaped, peaking at ρ = 0.96.
Intuitively, the difference in valuations induced by the inability to borrow and save is maximal when
shocks are persistent. Finally, even though a utilitarian planner finds perfect smoothing optimal,
θ = 1 is not a Pareto improvement relative to θ = 0: the individual with a higher initial endowment
at the time of the assessment is worse off for values of θ near 1, more so when shocks are more
persistent.

Term Structure. Figure 4 shows the term structure of welfare assessments, based on equation (14).
The normalized date-t welfare assessment, dWλ

t
dθ , is only slightly front-loaded. However, the time-

invariance of dWλ
t

dθ masks significant variation in each of its components. The risk-sharing component,
which is zero at t = 0 and positive at all times, captures all long-run gains from the policy. This occurs
because the smoothing policy has risk-sharing benefits at all dates, since CovΣ

i

[
ωit(st)
ωt(st) ,

dV
i|λ
t (st)

dθ

]
> 0

at all later times after t = 0.
In contrast, both the intertemporal-sharing and redistribution components are positive at t = 0

but end up contributing negatively to the welfare assessment of the policy. Since the normalized
date welfare gains dV

i|λ
t

dθ converge to the same (positive) value for both individuals when t → ∞, then
limt→∞ ΞIS

t = 0. The date on which the dynamic weights of both individuals intersect determines
when ΞIS

t turns negative. The fact that limt→∞ ΞRD
t < 0 is due to the fact that the individual

with the initially low endowment (and high marginal utility) values long-run welfare gains relatively
less. The subtle behavior of ΞIS

t and ΞRD
t is due to the fact that the dynamic weights intersect, as

explained in detail in Section D of the Online Appendix.

4.2 Application 2: Labor Income Taxation

This application contrasts the welfare effects of (linear) labor income taxes in two environments: i) a
deterministic environment in which individuals differ in their productivity at the time of the welfare
assessment, and ii) a stochastic environment in which individuals are identical at the time of the
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Figure 3: Welfare Decomposition (Application 1)

Note: This figure shows the welfare assessment and its components as a function of the perturbation parameter θ when
s0 = L for three parameterizations: ρ = 0.975 (top panel; benchmark), ρ = 0.5 (bottom left panel), and ρ = 0.999 (top
right panel), when s0 = L. The bottom right panel shows the welfare gains from the smoothing policy (integrating
marginal welfare gains between θ = 0 and θ = 1) as a function of the persistence parameter. This figure illustrates that
the persistence of the endowment process determines whether the welfare gains from the transfer policy are attributed
to risk-sharing, intertemporal-sharing, and redistribution
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Figure 4: Term Structure of Welfare Decomposition (Application 1)

Note: This figure shows the term structure of welfare assessments, dW
λ
t

dθ
, and its non-zero components: ΞRSt , ΞISt , and

ΞRDt , as defined in equation (14) and in Section D of the Online Appendix, when s0 = L.

welfare assessment, but experience different shocks. While both environments can be parameterized
to yield a quantitatively identical optimal tax, a utilitarian planner attributes the welfare gains
from the tax to redistribution in the deterministic environment and to risk-sharing in the stochastic
environment. Moreover, in the stochastic environment all welfarist planners agree on the magnitude
of the optimal tax, while in the deterministic environment the optimal tax is sensitive to the choice
of welfare function.

4.2.1 Deterministic Earnings

Environment. We first consider a single-date environment with two individuals i ∈ {1, 2} who
make a consumption-labor decision subject to a linear tax in labor earnings. Formally, individuals
have identical preferences given by

V i = u
(
ci, ni

)
,

where ci denotes consumption and ni hours worked. Individual budget constraints are given by

ci = (1 − τ)wini + g,

where τ is the linear tax rate and g is a uniform per-capita grant (demogrant) that must satisfy
g = 1

I τ
∑

iw
ini, and wi denotes individual i’s wage. We consider an equal-weighted utilitarian social

welfare function, so W
(
V 1, V 2) = V 1 + V 2, and adopt unit-consumption-based welfare numeraires.
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To simplify the exposition, we assume that preferences take the form u (c, n) = 1
1−γ

(
c− αnσ

σ

)1−γ
.

Our parameterization assumes w1 = 1, w2 = 5, γ = 0.5, σ = 2, and α = 1.

Welfare Decomposition. We now consider the welfare effects of changing the linear tax rate τ
where the demogrant g adjusts to satisfy the government’s budget constraint. The lifetime welfare
gains for individual i induced by a marginal tax change are given by

dV i|λ

dτ
=

dV i

dτ

λi
= −wini + dg

dτ
, (16)

where dg
dτ = 1

I

(∑
iw

ini + τ
∑

iw
i dni

dτ

)
. Since we are considering a static framework, Proposition 6

implies that ΞRS = ΞIS = 0, so the welfare decomposition exclusively features aggregate efficiency
and redistribution. In fact, the welfare assessment of a change in the tax rate can be decomposed as
follows:

dW λ

dτ
= −τ

∑
i

wi

(
−dni

dτ

)
︸ ︷︷ ︸

ΞAE (Aggregate Efficiency)

+CovΣ
i

[
ωi,−wini

]
︸ ︷︷ ︸
ΞRD (Redistribution)

, where ωi =
∂u(ci,ni)

∂c

1
I

∑
i

∂u(ci,ni)
∂c

. (17)

As illustrated in the left panel of Figure 5, aggregate efficiency welfare gains are 0 at τ = 0 and
become increasingly negative as τ increases. These losses capture how the tax reduces the desire
to work by individuals. Redistribution gains are strictly positive but decreasing, so this optimal
taxation problem is well-behaved and features an optimal interior tax τ⋆ that optimally trades off
aggregate efficiency losses with redistribution gains.14

4.2.2 Random Earnings

Environment. We now consider an environment in which two identical individuals i ∈ {1, 2} face
uninsured earnings risk. At the time of the welfare assessment, individuals have expected utility of
the form

V i =
∑

s

π (s)u
(
ci (s) , ni (s)

)
,

where ci (s) and ni (s) denote consumption and hours work in state s. For simplicity, we assume
that there are two possible states s = {H,L}, with probability π (s) = 1

2 . To ensure that risk is
idiosyncratic, we assume that, in state s = H, wages are given by w1 (H) = w and w2 (H) = w,
while in state L, w1 (L) = w and w2 (H) = w, where w > w. After the state is realized, individuals
make a consumption-labor decision facing a linear tax in labor earnings, and face budget constraints

14The optimal linear income tax problem is first studied by Sheshinski (1972). See Piketty and Saez (2013) and
Kaplow (2022) for recent surveys of this area.
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Figure 5: Welfare Decomposition (Application 2)

Note: This figure shows the welfare assessment and the components of the welfare decomposition as a function of the
tax rate τ for both the deterministic and random earnings models.

given by
ci (s) = (1 − τ)wi (s)ni (s) + g,

where τ is the linear tax rate, which we assume to be state-independent, and g = 1
I τ
∑

iw
i (s)ni (s)

is a demogrant, which given our assumptions is also state-independent — for this reason, we write
g rather than g (s). We again consider an equal-weighted utilitarian social welfare function, so
W
(
V 1, V 2) = V 1 + V 2, and adopt unit-consumption-based welfare numeraires. We assume again

that preferences take the form u
(
ci, ni

)
= 1

1−γ

(
c− αnσ

σ

)1−γ
. Our parameterization assumes w = 1,

w = 5, γ = 0.5, σ = 2, and α = 1.

Welfare Decomposition. We again consider the welfare effects of changing the linear tax rate
τ where the demogrant g adjusts to satisfy the government’s budget constraint at each state. The
lifetime welfare gains for individual i induced by a marginal tax change are given by

dV i|λ

dτ
=

dV i

dτ

λi
=
∑

s

ωi
1 (s)

[
−wi (s)ni (s) + dg

dτ

]
where ωi

1 (s) =
π (s) ∂u(ci(s),ni(s))

∂c(s)∑
s π (s) ∂u(ci(s),ni(s))

∂c(s)

, (18)

and where dg
dτ = 1

I

(∑
iw

i (s)ni (s) + τ
∑

iw
i (s) dni(s)

dτ

)
. Since we are considering a framework with

ex-ante identical individuals, Proposition 6 implies that ΞIS = ΞRD = 0, so the welfare decomposition
exclusively features aggregate efficiency and risk-sharing. In fact, the welfare assessment of a change
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in the tax rate can be decomposed as follows:

dW λ

dτ
= −τ

∑
s

ω1 (s)
∑

i

wi (s)
(

−dni (s)
dτ

)
︸ ︷︷ ︸

ΞAE (Aggregate Efficiency)

+
∑

s

ω1 (s)CovΣ
i

[
ωi

1 (s)
ω1 (s) ,−w

i (s)ni (s)
]

︸ ︷︷ ︸
ΞRS (Risk-Sharing)

, (19)

where ω (s) = 1
I

∑
i ω

i (s) and where we use the fact that the normalized individual weight ωi is
identical across individuals. As illustrated in the right panel of Figure 5, aggregate efficiency welfare
losses are 0 at τ = 0 and become increasingly negative as τ increases, for the same reason as in the
deterministic case. Risk-sharing gains are strictly positive but decreasing, as in the deterministic
case. Hence, this optimal taxation problem is also well-behaved and features an optimal interior tax
τ⋆ that optimally trades off aggregate efficiency losses with risk-sharing gains.

Remark 4. (Pareto Improvement with ΞE > 0, ΞAE < 0, and ΞRS > 0) A tax increase in the
random earnings model illustrates how a welfare assessment can concurrently feature ΞE > 0 and
ΞAE < 0. In this economy, an increase in the tax rate below τ⋆ is indeed a Pareto improvement,
which necessarily implies that ΞE > 0. In that region, aggregate consumption and, more importantly,
aggregate history welfare gains decrease as τ increases, which implies that ΞAE < 0. However, the
gains from reallocating consumption from individuals with low to high normalized stochastic weights
are sufficiently large to make such tax increases desirable and ultimately a positive tax optimal.

4.2.3 Comparison of Deterministic and Random Earnings Models

This application shows that the welfare decomposition can be used to formalize that the deterministic
and random earnings models feature different equity-efficiency tradeoffs. While the literature on labor
income taxation has conceptually made this distinction — see Piketty and Saez (2013) and Kaplow
(2022) — our decomposition provides a formal systematic procedure to understand the rationales
that justify optimal taxes in different environments.

Figure 5 precisely compares these two models. While we have parametrized both models so as
to yield the same normalized welfare assessment dWλ

dτ and optimal tax τ⋆, the welfare decomposition
shows that the rationale justifying the optimal tax in both models is substantially different. Drawing
this distinction is important because it points out to which policy instruments would make a linear
income tax unnecessary. In particular, in the deterministic earnings model, a planner would need
access to ex-ante transfers across individuals. In the random earnings model, the planner would need
access to transfers across individuals contingent on possible state.

In both models, increasing the tax rate has identical distortionary effects reducing labor supply,
which leads to a reduction in aggregate history welfare gains and a negative aggregate efficiency
component. However, in the deterministic model the source of welfare gains is redistribution across
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individuals, while in the random earnings model the source of welfare gains is risk-sharing. Moreover,
in the random earnings model all welfarist planners agree on the magnitude of the optimal tax,
while in the deterministic model the optimal tax is sensitive to the choice of welfare function. This
occurs because in the random earnings model there is no equity-efficiency tradeoff: all welfare gains
are efficiency gains. In more realistic models in which individuals are both heterogeneous at the
assessment and face uninsured risks (see e.g. Heathcote, Storesletten and Violante (2017)), both
ΞAE , ΞRS , and ΞRD (and typically ΞIS in a model with more dates) will interact non-trivially to
shape the optimal policy.

4.3 Application 3: Credit Constraint Relaxation

This application studies the welfare implications of a change in credit conditions in an economy
in which borrowing-constrained individuals make an investment decision. Varying the borrowing
limit in this economy is a tractable perturbation that parameterizes changes in the degree of market
completeness. This application, in which all four components of the welfare decomposition are non-
zero, illustrates how the welfare decomposition is useful to uncover subtle normative implications of
a perturbation.

4.3.1 Environment

We consider a two-date economy populated by two (types of) individuals, i ∈ {1, 2}, with identical
preferences, given by

u
(
ci

0

)
+ β

∑
s

π (s)u
(
ci

1 (s)
)
,

where ci
0 and ci

1 (s) denote consumption of the single consumption good, π (s) denotes the
probabilities of different states at date 1; β is a discount factor, and u (c) denotes the instantaneous
utility function. Since this application assumes perfect competition, individuals in this model
correspond to a continuum of agents in equal measure. We refer to i = 1 individuals as investors
and to i = 2 individuals as lenders.

Investors face budget constraints given by

ci
0 = n0 + q0b

i
1 − Υi

(
ki

0

)
ci

1 (s) = n1 (s) + z (s) ki
0 − bi

1,

where n0 and n1 (s) denote endowments of the consumption good, bi
1 denotes the face value of the

amount borrowed at price qi
0 (the interest rate in this economy is 1/qi

0), and Υi
(
ki

0
)

denotes the cost
of producing ki

0 units of capital at date 0, which yields z (s) units at date 1 in state s. For simplicity,
we assume that there are two states s = {H,L}, with z (H) > z (L), and that

∑
s π (s) z (s) is
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Figure 6: Welfare Decomposition and Lifetime Welfare Gains (Application 3)

Note: The left panel of this figure shows the welfare assessment and the components of the welfare decomposition
as a function of the borrowing limit b. The right panel shows the normalized lifetime welfare gains for investors and
lenders, the normalized welfare assessment, and the efficiency component, as a function of the borrowing limit b.

sufficiently large so that investors always find it optimal to invest and borrow. Lenders face identical
budget constraints, but cannot operate the capital technology, so Υ2 (k2

0
)

= k2
0 = 0.

Investors can borrow up to a predetermined borrowing limit b:

bi
1 ≤ b.

Therefore, this economy features two forms of market incompleteness: i) investors cannot arrange
insurance from lenders against the investment risk they bear since they only have access to a non-
contingent security, and ii) investors and lenders cannot frictionlessly borrow and save when the
borrowing constraint binds.15

An equilibrium is characterized by allocations
{
ci

0, c
i
1 (s) , bi

1, k
1
0
}

and a price of the riskless asset
q0 that clears the market for borrowing and saving, so that

∑
i b

i
1 = 0. When solving the model, we

assume that Υ1 (k1
0
)

= ϕ
2
(
k1

0
)2 and u (c) = c1−γ

1−γ . Our parameterization assumes β = 0.95, γ = 1.5,
ϕ = 0.1, z (L) = 5, z (H) = 35, π (L) = 0.7, and ni

0 = ni
1 (s) = 40.

15An alternative exercise that we do not explore here is to understand the welfare impact of changing the aggregate
amount of public debt — see, for instance, Woodford (1990), or more recently Azzimonti and Yared (2019), among
others.
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4.3.2 Welfare Decomposition

We consider the welfare effects of varying the borrowing limit b from 0, which corresponds to an
autarky economy, until bu, the level at which the borrowing constraint ceases to bind. The left panel
in Figure 6 shows the normalized welfare assessment and the welfare decomposition associated with
this perturbation. The right panel shows normalized lifetime welfare gains for investors and lenders,
the normalized welfare assessment, and the efficiency component.

Figure 6 illustrates how changes in the borrowing limit impact welfare through the four
components of the welfare decomposition, with each component taking the following sign:

dW λ

db
= ΞAE︸ ︷︷ ︸

>0

+ ΞRS︸︷︷︸
<0

+ ΞIS︸︷︷︸
>0

+ ΞRD︸ ︷︷ ︸
⋛0

.

First, as we relax the borrowing limit, investors are able to invest more, which increases discounted
(using an aggregate discount factor) aggregate history welfare gains, which in turn implies ΞAE > 0.
Since relaxing the borrowing limit also increases the resources available to investors at date 0, when
their relative valuation is higher, this implies ΞIS > 0. As the borrowing limit approaches the
unconstrained level of borrowing bu, intertemporal-sharing tends towards zero because, at that point,
dynamic weights are equalized across investors and lenders. In contrast, ΞAE is still strictly positive.
This is explained by the fact that markets remain incomplete, so the economy is not at a Pareto
optimal allocation.

Second, as we relax the borrowing limit and investors increase their investment, their consumption
becomes relatively more exposed to the investment risk, which they are unable to share with lenders:
formally CovΣ

i

[
ωi1(s)
ω1(s) ,

dci1(s)
db

]
< 0, where dci1(s)

db
= z (s) dki0

db
− dbi1

db
. This justifies why ΞRS < 0 and

illustrates how making markets more complete — in the sense of relaxing a borrowing constraint
— may be associated with a negative risk-sharing component, a phenomenon that may seem
counterintuitive at first. Similar to ΞAE , as the borrowing limit approaches bu, ΞRS is still strictly
negative, as markets remain incomplete for any level of b.

Third, as we relax the borrowing limit, ΞRD switches from negative to positive. In this economy,
the value of a unit of perpetual consumption for lenders is higher than for investors since the former
lack access to the profitable investment technology. This difference explains why the normalized
individual weights of a utilitarian planner are ω1 ≈ 0.82 and ω2 ≈ 1.18, favoring welfare gains by
lenders. As we show in the Appendix, exploiting optimality conditions, it is possible to show that
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lifetime welfare gains take the form

dV i

db
=
(
u′
(
ci

0

)
q0 − β

∑
s

π (s)u′
(
ci

1 (s)
)) dbi

1
db︸ ︷︷ ︸

Direct Borrowing Effect

+u′
(
ci

0

) dq0

db
bi

1︸ ︷︷ ︸
Distributive

Pecuniary Effect

. (20)

The direct borrowing effect in (20) is zero for lenders and strictly positive for constrained investors,
while the distributive pecuniary effects are zero-sum in units of date-0 consumption, that is∑

i
dq0
db
bi

1 = 0 (Dávila and Korinek, 2018). Because relaxing the borrowing limit increases borrowing
and interest rates, dq0

db
< 0, the distributive pecuniary effect hurts those who borrow (investors) and

benefits those who lend (lenders). The right panel in Figure 6 shows that relaxing the borrowing
limit for low values of b benefits both investors and lenders, with the former benefiting more. As
the borrowing limit b increases, investors’ marginal welfare gains are reduced and eventually turn
negative. This occurs because each individual investor fails to internalize how borrowing more
increases interest rates in the competitive equilibrium, hurting other investors. The right panel of
Figure 6 shows that ΞRD turns negative when the normalized lifetime welfare gains for investors and
lenders intersect.

Finally, it is worth highlighting that the efficiency component as a whole, ΞE = ΞAE +ΞRS +ΞIS ,
is always positive, becoming zero as the borrowing limit approaches bu. While it is natural that the
efficiency implications of relaxing the constraint approach zero as the constraint ceases to bind, this
result implies that ΞAE + ΞRS = 0 when b = bu, further explaining why aggregate efficiency and
risk-sharing take opposite signs at that point.

5 Additional Results and Extensions

The Online Appendix presents several extensions and additional results, which we summarize here.

Generalized Welfare Criteria: DS-planners Section E leverages the welfare decomposition to
systematically construct non-welfarist welfare criteria based on individual, dynamic, and stochastic
weights. This approach allows us to formalize normative objectives that isolate specific components
of the welfare decomposition. Because this normative approach entails defining weights for each
time, history, and individual as a primitive of the welfare assessment, we say it is based on Dynamic
Stochastic Generalized Social Marginal Welfare Weights (dynamic–stochastic weights or DS-weights,
for short). These newly introduced DS-planners have the potential to allow for disciplined discussions
about the mandates of independent technocratic institutions (central banks, financial regulators,
other regulatory agencies, etc.).
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Generalized Environments. Section F derives the welfare decomposition for general welfare
numeraires and discusses the implications of different numeraire choices. Section G describes how to
extend our results to more general environments. First, we show how to use the welfare decomposition
in environments with heterogeneous beliefs, both for welfarist and non-welfarist planners. Second, we
describe how to allow for recursive preferences, in particular, the widely used Epstein-Zin preferences.
We also consider the case of non-time separable non-expected utility preferences. Third, we show that
allowing for multiple consumption goods and factors simply requires redefining history welfare gains.
Fourth, we describe how to consider perturbations that entail changes in probabilities. Fifth, we show
how to generalize the welfare decomposition to scenarios in which normalized individual, dynamic,
or stochastic weights are zero. Finally, we briefly discuss how to implement the decomposition in
environments with idiosyncratic and aggregate states, a continuum of individuals, dates, or histories,
and non-differentiabilities.

Subdecompositions and Alternative Decompositions. Section H describes how to further
decompose the components of the welfare decomposition. In addition to the term structure
decomposition already described, we show that each individual can be attributed a particular share
of each of the components of the welfare decomposition. Next, we show that it is possible to
decompose each of the components into a term due to consumption or factor supply growth and
a term due to reallocation. We also show how to construct a stochastic decomposition of aggregate
efficiency into expected aggregate efficiency and aggregate smoothing, and of redistribution into
expected redistribution and redistributive smoothing. Finally, we provide two alternative cross-
sectional decompositions of the risk-sharing and intertemporal-sharing components.

Additional Results. Section I includes additional results. First, we study properties of the welfare
decomposition for allocations that solve the Pareto problem. Second, we explain how the ability
to costlessly transfer resources across individuals by a planner impacts the welfare decomposition
by limiting cross-sectional variation in normalized weights. Third, we explain how to translate
marginal welfare assessments into global welfare assessments. Finally, we provide bounds based on
the dispersion of normalized weights and welfare gains for ΞRS , ΞIS , and ΞRD.

6 Conclusion

This paper introduces a decomposition of welfare assessments for general dynamic stochastic
economies with heterogeneous individuals. Guided by the compensation principle, it initially
decomposes a welfare assessment into an efficiency and a redistribution component, while the
efficiency component is further decomposed into i) aggregate efficiency, ii) intertemporal-sharing,
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and iii) risk-sharing components. The decomposition is based on constructing individual, dynamic,
and stochastic weights that characterize how welfarist planners make tradeoffs across individuals,
dates, and histories.

Retrospectively, the welfare decomposition opens the door to revisiting the exact rationales that
have justified welfarist welfare assessments in existing work. Looking forward, we hope our results
inform ongoing and future discussions on the desirability of particular policies, the welfare impact of
shocks, and the design of policy-making mandates.
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Appendix
A Proofs and Derivations: Section 3

Proof of Lemma 1. (Normalized Welfare Gains and Normalized Weights)

Proof. We can express an (unnormalized) welfare assessment dW
dθ as

dW

dθ
=
∑

i

∂W
∂V i

dV i

dθ
=
∑

i

∂W
∂V i

λi
dV i

dθ

λi
,

where our choice of lifetime welfare numeraire is such that λi =
∑

t

(
βi
)t∑

st πt
(
st
) ∂uit(st)

∂cit
. Hence,

the normalized welfare assessment takes the form

dW λ

dθ
=

dW
dθ

1
I

∑
i

∂W
∂V iλi

=
∑

i

ωi
dV i

dθ

λi
, where ωi =

∂W
∂V iλ

i

1
I

∑
i

∂W
∂V iλi

.

We can then express individual i’s lifetime welfare gains in units of the lifetime welfare numeraire as

dV i|λ

dθ
=

dV i

dθ

λi
=
∑

t

∑
st

(
βi
)t
πt
(
st
)

λi

dV i
t

(
st
)

dθ
=
∑

t

∑
st

(
βi
)t
πt
(
st
) ∂uit(st)
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λi

dV i
t (st)
dθ

∂uit(st)
∂cit

=
∑

t

∑
st
(
βi
)t
πt
(
st
) ∂uit(st)
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λi

∑
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(
βi
)t
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(
st
) ∂uit(st)

∂cit∑
st (βi)t πt (st) ∂uit(st)
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dV
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t

(
st
)

dθ

=
∑

t

ωi
t

∑
st

ωi
t

(
st
) dV i|λ

t

(
st
)

dθ
,

where ωi
t =

∑
st(βi)tπt(st)λit(st)∑

t
(βi)t

∑
st

πt(st)
∂ui
t(st)
∂ci
t

, ωi
t

(
st
)

= (βi)tπt(st)λit(st)∑
st

(βi)tπt(st)λit(st)
, and dV

i|λ
t (st)

dθ =
dV it (st)

dθ
∂ui
t(st)
∂ci
t

is given in

equation (6).

Proof of Proposition 1. (Efficiency/Redistribution Decomposition)

Proof. For any two random variables xi and yi, it follows that
∑

i xiyi = 1
I

∑
i xi

∑
i yi +CovΣ

i [xi, yi],
where CovΣ

i [xi, yi] = I · Covi [xi, yi]. Equation (10) follows from

dW λ

dθ
=
∑

i

ωidV
i|λ

dθ
=
∑

i

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸

ΞRD

,
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where we use the fact that 1
I

∑
i ω

i = 1. This is the unique decomposition of the weighted sum∑
i ω

i dV i|λ

dθ into an unweighted sum and its complement.

Proof of Proposition 2. (Properties of Efficiency/Redistribution Decomposition)

Proof. a) This result follows from the fact that the social welfare function exclusively impacts the
definition of ωi, and that dV i|λ

dθ — equivalently, normalized dynamic and stochastic weights — is
invariant to the social welfare function.

b) This result follows from the fact that dV i|λ

dθ — equivalently, normalized dynamic and stochastic
weights — is invariant to the preference-preserving transformations considered.

c) This result follows immediately from the definitions of ΞRD and ωi.

Proof of Proposition 3. (Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing
Decomposition)

Proof. Starting from the definition of the efficiency component:

ΞE =
∑

i

dV i

dθ
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∑
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∑
t
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∑
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where ωt = 1
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Online Appendix
Section C of this Online Appendix provides detailed derivations for Examples 1 through 5. Section
D includes proofs and derivations for Section 4 of the paper. Section E constructs non-welfarist
welfare criteria based on individual, dynamic, and stochastic weights. Section F derives the welfare
decomposition for general welfare numeraires. Sections G, H, and I include extensions and additional
results, and Section J relates our results to existing work.

B Proofs and Derivations: Section 3 (cont.)

Proof of Proposition 4. (Properties of Aggregate
Efficiency/Risk-Sharing/Intertemporal-Sharing Decomposition)

Proof. a) When marginal rates of substitution are equalized across all dates and histories across
individuals, ωi

t

(
st
)

= ωt
(
st
)

and ωi
t = ωt. Alternatively, from equation (13), when markets are

complete there is a unique stochastic discount factor, which implies that qi
t

(
st
)

= qt
(
st
)
. Proposition

5a) then implies that ΞRS = ΞIS = 0.
b) When marginal rates of substitution are equalized across all dates across individuals, ωi

t = ωt.
Alternatively, from equation (13), when individuals frictionlessly borrow and save,

∑
st q

i
t

(
st
)

is
identical across individuals. Proposition 5a) then implies that ΞIS = 0.

c) This result follows from the definition of ΞAE when
∑

i
dV

i|λ
t (st)

dθ = 0, ∀st.

Proof of Proposition 5. (Properties of Welfare Decomposition: Individual-Invariant
Weights or Welfare Gains)

Proof. a) If ωi
t

(
st
)

are identical across individuals, CovΣ
i

[
ωi

t

(
st
)
,

dV
i|λ
t (st)

dθ

]
= 0, ∀t, ∀st, so ΞRS = 0.

If ωi
t are identical across individuals, CovΣ
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dθ

]
= 0, ∀t, so ΞIS = 0. If ωi are identical across
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i
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ωi, dV i|λ

dθ

]
= 0, so ΞRD = 0.

b) If dV
i|λ
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dθ are identical across individuals, CovΣ
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(
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dV
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= 0, ∀t, ∀st, so ΞRS = 0.

If dV
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t

dθ are identical across individuals, CovΣ
i

[
ωi

t,
dV

i|λ
t

dθ

]
= 0, ∀t, so ΞIS = 0. If dV i|λ

dθ are identical

across individuals, CovΣ
i

[
ωi, dV i|λ

dθ

]
= 0, so ΞRD = 0.

Proof of Proposition 6. (Properties of Welfare Decomposition: Particular Economies)

Proof. a) If I = 1, all normalized weights are trivially identical across individuals. The result then
follows from Proposition 5a).

b) If there is no risk, ωi
t

(
st
)

= 1, ∀st. The result then follows from Proposition 5a).
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c) If individuals are ex-ante identical, ωi and ωi
t are identical across individuals. The result then

follows from Proposition 5a).
d) Since we have assumed that π0

(
s0|s0

)
= 1, ωi

0 = ωi
0
(
st
)

= 1 when T = 0.16 The result then
follows from Proposition 5a).

e) In a single good endowment economy, the single good is the only possible history welfare
numeraire. Hence

∑
i

dV
i|λ
t (st)

dθ =
∑

i
dcit(st)

dθ = 0, where the last equality follows from the fact that
the aggregate consumption equals the aggregate endowment, which is invariant to the perturbation.
The result then follows from the definition of ΞAE .

Proof of Proposition 7. (Properties of Welfare Decomposition: Transfers)

Proof. In a) a planner sets transfers so that ωi is identical across individuals. In b), a planner sets
transfers so that ωi

t is identical across individuals. In c), a planner sets transfers so that ωi
t

(
st
)

is
identical across individuals. The results then follow from Proposition 5a).

C Detailed Derivations: Examples Section 3

Whenever it is useful for illustration, we assume that u (c) = log (c) and that θ = 0.

C.1 Example 1

In this simple economy, dynamic and stochastic weights are equal to 1. Note that dcA

dθ = 1 and
dcB

dθ = −1, so
∑

i
dci

dθ = 0.
Individual weights are given by

ωi = αiu′ (ci
)

1
2
∑

i α
iu′ (ci)

=
αi 1

ci

1
2
∑

i α
i 1

ci
= αi

1
2
∑

i α
i

if θ = 0,

where αi denotes the Pareto weights.
The welfare decomposition is

dW λ

dθ
= dW

1
2
∑

i α
iu′ (ci)

=
∑

i

ωidc
i

dθ
=
∑

i

dci

dθ︸ ︷︷ ︸
ΞAE

+CovΣ
i

[
ωi,

dci

dθ

]
︸ ︷︷ ︸

ΞRD

,

16Models with a single date but multiple histories — as the random earnings scenario in Application 2 — can be
interpreted as a two-date model in which instantaneous utility is zero at the initial date: see Section G.5 of the Online
Appendix.
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where

ΞAE =
∑

i

dci

dθ
= 0

ΞRD =
∑

i

(
ωi − 1

) dci

dθ
= ωA − ωB = αA − αB

1
2 (αA + αB)

if θ = 0.

As stated in the text, ΞRD can take on any sign depending on ωi. If the individual weight for
individual A is higher than for B, ωA > ωB, and ΞRD > 0. If instead ωA < ωB, then ΞRD < 0.

C.2 Example 2

In this simple economy, dynamic and stochastic weights are equal to 1. Note that dcA

dθ = 2 and
dcB

dθ = 1, so
∑

i
dci

dθ = 3.
As in Example 1, Individual weights are given by

ωi = αiu′ (ci
)

1
2
∑

i α
iu′ (ci)

=
αi 1

ci

1
2
∑

i α
i 1

ci
= αi

1
2
∑

i α
i

if θ = 0,

where αi denotes the Pareto weights.
The welfare decomposition is

dW λ

dθ
= dW

1
2
∑

i α
iu′ (ci)

=
∑

i

ωidc
i

dθ
=
∑

i

dci

dθ︸ ︷︷ ︸
ΞAE

+CovΣ
i

[
ωi,

dci

dθ

]
︸ ︷︷ ︸

ΞRD

,

where

ΞAE =
∑

i

dci

dθ
= 3

ΞRD =
∑

i

(
ωi − 1

) dci

dθ
− =

(
ωA − 1

)
2 +

(
ωB − 1

)
= ωA − ωB

2 = αA − αB

αA + αB
if θ = 0.

As stated in the text, ΞRD can take on any sign depending on ωi. If the individual weight for
individual A is higher than for B, ωA > ωB, and ΞRD > 0. If instead ωA < ωB, then ΞRD < 0.
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C.3 Example 3

First Economy. Individual and stochastic weights are ωi = ωi
1 (s) = 1. Dynamic weights, which

are identical for both individuals, are given by

ωi
0 = u′ (ci

0
)

u′ (ci
0
)

+ u′ (ci
1
) =

1
3−θ

1
3−θ + 1

1+θ

= 1
4 if θ = 0

ωi
1 = u′ (ci

1
)

u′ (ci
0
)

+ u′ (ci
1
) =

1
1+θ

1
3−θ + 1

1+θ

= 3
4 if θ = 0.

Hence, ω0 = 1
4 and ω1 = 3

4 if θ = 0. Note that dci0
dθ = −1 and dci1

dθ = 1, so

dc0
dθ

=
∑

i

dci
0

dθ
= −2 and dc1

dθ
=
∑

i

dci
1

dθ
= 2.

The welfare decomposition is

dW λ

dθ
= ΞE = ΞAE = ω0

dc0
dθ

+ ω1
dc1
dθ

= 1
4 (−2) + 3

4 (+2) = 1.

Second Economy. Individual and stochastic weights are ωi = ωi
1 (s) = 1. Dynamic weights for

individual 1 are

ω1
0 = u′ (c1

0
)

u′ (c1
0
)

+ u′ (c1
1
) =

1
3−θ

1
3−θ + 1

1+θ

= 1
4 if θ = 0

ω1
1 = u′ (c1

1
)

u′ (c1
0
)

+ u′ (c1
1
) =

1
1+θ

1
3−θ + 1

1+θ

= 3
4 if θ = 0.

Dynamic weights for individual 2 are

ω2
0 = u′ (c2

0
)

u′ (c2
0
)

+ u′ (c2
1
) =

1
1+θ

1
3−θ + 1

1+θ

= 3
4 if θ = 0

ω2
1 = u′ (c1

1
)

u′ (c2
0
)

+ u′ (c2
1
) =

1
3−θ

1
3−θ + 1

1+θ

= 1
4 if θ = 0.

Note that

ω0 = 1
2
∑

i

ωi
0 = 1

2

(1
4 + 3

4

)
= 1

2 and ω1 = 1
2
∑

i

ωi
1 = 1

2

(3
4 + 1

4

)
= 1

2 if θ = 0.
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Note that dc1
0

dθ = −1, dc2
0

dθ = 1, dc1
1

dθ = 1, and dc2
1

dθ = −1, so

dc0
dθ

=
∑

i

dci
0

dθ
= 0 and dc1

dθ
=
∑

i

dci
1

dθ
= 0.

The welfare decomposition is

dW λ

dθ
= ΞE = ΞIS = ω0

∑
i

(
ωi

0
ω0

− 1
)
dci

0
dθ

+ ω1
∑

i

(
ωi

1
ω1

− 1
)
dci

1
dθ

=

= 1
2

((1
2 − 1

)
(−1) +

(3
2 − 1

)
(+1)

)
+ 1

2

((3
2 − 1

)
(+1) +

(1
2 − 1

)
(−1)

)
= 1.

C.4 Example 4

First Economy. Individual and dynamic weights are ωi = ωi
1 = 1. Stochastic weights, which are

identical for both individuals, are given by

ωi
1 (1) = π (1)u′ (ci (1)

)∑
s π (s)u′ (ci (s)) =

1
3−θ

1
1+θ + 1

3−θ

= 1
4 if θ = 0

ωi
1 (2) = π (2)u′ (ci (2)

)∑
s π (s)u′ (ci (s)) =

1
1+θ

1
1+θ + 1

3−θ

= 3
4 if θ = 0.

Hence ω1 (1) = 1
4 and ω1 (2) = 3

4 if θ = 0. Note that dci(1)
dθ = −1 and dci(2)

dθ = 1, so

dc (1)
dθ

=
∑

i

dci (1)
dθ

= −2 and dc (2)
dθ

=
∑

i

dci (2)
dθ

= 2.

The welfare decomposition is

dW λ

dθ
= ΞE = ΞAE = ω1 (1) dc (1)

dθ
+ ω1 (2) dc (2)

dθ
= 1

4 (−2) + 3
4 (+2) = 1.

Second Economy. Individual and dynamic weights are ωi = ωi
1 = 1. Stochastic weights for

individual 1 are

ω1
1 (1) = π (1)u′ (ci (1)

)∑
s π (s)u′ (ci (s)) =

1
3−θ

1
1+θ + 1

3−θ

= 1
4 if θ = 0

ω1
1 (2) = π (2)u′ (ci (2)

)∑
s π (s)u′ (ci (s)) =

1
1+θ

1
1+θ + 1

3−θ

= 3
4 if θ = 0.
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Stochastic weights for individual 2 are

ω2
1 (1) = π (1)u′ (c2 (1)

)∑
s π (s)u′ (c2 (s)) =

1
1+θ

1
1+θ + 1

3−θ

= 3
4 if θ = 0

ω2
1 (2) = π (2)u′ (c2 (2)

)∑
s π (s)u′ (c2 (s)) =

1
3−θ

1
1+θ + 1

3−θ

= 1
4 if θ = 0.

Note also that

ω1 (1) = 1
2
∑

i

ωi
1 (1) = 1

2 and ω1 (2) = 1
2
∑

i

ωi
1 (2) = 1

2 if θ = 0,

Note that dc1(1)
dθ = −1, dc1(2)

dθ = 1, dc1(2)
dθ = 1, and dc1(2)

dθ = 1, so

dc (1)
dθ

=
∑

i

dci (1)
dθ

= 0 and dc (2)
dθ

=
∑

i

dci (2)
dθ

= 0.

The welfare decomposition is

dW λ

dθ
= ΞE = ΞRS =

∑
s

ω1 (s)
∑

i

(
ωi

1 (s)
ω1 (s) − 1

)
dci (s)
dθ

= 1
2

((1
2 − 1

)
(−1) +

(3
2 − 1

)
(+1) +

(1
2 − 1

)
(−1) +

(3
2 − 1

)
(+1)

)
= 1.

C.5 Example 5

Individual and stochastic weights are ωi = ωi
1 (s) = 1. Dynamic weights for individual 1 are

ω1
0 = u′ (c1

0
)

u′ (c1
0
)

+ u′ (c1
1
) =

1
3−θ−αθ

1
3−θ−αθ + 1

1+θ−αθ

= 1
4 if θ = 0

ω1
1 = u′ (c1

0
)

u′ (c1
0
)

+ u′ (c1
1
) =

1
1+θ−αθ

1
3−θ−αθ + 1

1+θ−αθ

= 3
4 if θ = 0.

Dynamic weights for individual 2 are

ω2
0 = u′ (c2

0
)

u′ (c2
0
)

+ u′ (c2
1
) =

1
1+θ−αθ

1
3−θ−αθ + 1

1+θ−αθ

= 3
4 if θ = 0

ω2
1 = u′ (c2

0
)

u′ (c2
0
)

+ u′ (c1
1
) =

1
3−θ−αθ

1
3−θ−αθ + 1

1+θ−αθ

= 1
4 if θ = 0.
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Note that
ω0 = 1

2
∑

i

ωi
0 = 1

2 and ω1 = 1
2
∑

i

ωi
1 = 1

2 if θ = 0.

Note that dc1
0

dθ = −1 − α, dc2
0

dθ = 1 − α, dc1
1

dθ = 1 − α, and dc2
1

dθ = −1 − α, so

dc0
dθ

=
∑

i

dci
0

dθ
= −2α and dc1

dθ
=
∑

i

dci
1

dθ
= −2α.

The welfare decomposition is

dW λ

dθ
= ω0

∑
i

dci
0

dθ
+ ω1

∑
i

dci
1

dθ︸ ︷︷ ︸
ΞAE

+
∑

i

(
ωi

0
ω0

− 1
)
dci

0
dθ

+ ω1
∑

i

(
ωi

1
ω1

− 1
)
dci

1
dθ︸ ︷︷ ︸

ΞIS

= 1 − 2α,

where

ΞAE = 1
2 (−2α) + 1

2 (−2α) = −2α

ΞIS = 1
2

(
−1

2 (−1 − α) + 1
2 (1 − α)

)
+ 1

2

(1
2 (1 − α) − 1

2 (−1 − α)
)

= 1.

At θ = 0, ΞAE < 0 and ΞIS > 0., where the overall welfare effect is positive whenever α < 1
2 .

D Detailed Derivations: Applications Section 4

D.1 Application 1

Figure OA-1 here explains the behavior of ΞIS
t and ΞRD

t in Figure 4 in the text. Note that

ΞIS
t = CovΣ

i

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
and ΞRD

t = CovΣ
i

[
ωi,

ωi
t

ωt

dV
i|λ

t

dθ

]
.

The left panel in Figure OA-1 shows that the risk-discounted welfare gains for individual i at date t,
dV

i|λ
t

dθ , are initially positive for the individual with the lower endowment at s0 = L (individual 1) and
negative for the individual with the higher endowment, although they both converge to a positive
common value. This captures the fact that the policy initially hurts the individual who starts with
a high endowment and benefits the individual who starts with a low endowment, but as time goes
by, the identity of the favored individual is uncertain. In the long run, both individuals are favored
by the policy by eliminating consumption risk.

The right panel in Figure OA-1 shows that the risk-discounted welfare gains for individual i at
date t relative to the average, ωit

ωt

dV
i|λ
t

dθ , converge to positive values for both individuals, but initially
negative and higher in the long run for individual 2 (with the higher endowment at s0 = L). Because
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Figure OA-1: Welfare Decomposition and Lifetime Welfare Gains (Application 1)

Note: The left panel of this figure shows the risk-discounted welfare gains for individual i at date t, dV
i|λ

t
dθ

. The right

panel of this figure shows the risk-discounted welfare gains for individual i at date t relative to the average, ωi
t
ωt

dV
i|λ

t
dθ

ωit
ωt

dV
i|λ
t

dθ does not converge to the same value for both individuals, ΞRD
t is non-zero (negative) in the

long-run. Intuitively, while the long-run welfare gains of the policy at date t are positive and equal
for both individuals at date t, such gains are valued more by the individual with a higher endowment
at the time of the assessment, since this individual values future consumption in the future relatively
more — see the dynamic weights in the left panel of Figure 2. And since the individual with the
higher endowment at the time of the assessment also features a lower individual weight ωi, this logic
makes ΞRD

t negative in the long run.

D.2 Application 2

D.2.1 Deterministic Earnings

The optimal consumption-labor decision for each individual i is given by

(1 − τ)wi∂u
(
ci, ni

)
∂ci

+ ∂u
(
ci, ni

)
∂ni

= 0. (OA1)

Given the assumed preferences u (c, n) = 1
1−γ

(
c− αnσ

σ

)1−γ
, equation (OA1) defines a labor supply

function

ni (τ) =
(

(1 − τ)wi

α

) 1
σ−1

,
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which allows us to express the demogrant as g (τ) = τ 1
I

∑
iw

ini (τ), which in turn implies that

dg

dτ
= 1
I

(∑
i

wini + τ
∑

i

widn
i

dτ

)
.

We can express individual lifetime welfare gains dV i

dτ as

dV i

dτ
= ∂u

(
ci, ni

)
∂ci

dci

dτ
+ ∂u

(
ci, ni

)
∂ni

dni

dτ

= ∂u
(
ci, ni

)
∂ci

(
−wini + (1 − τ)widn

i

dτ
+ dg

dτ

)
+ ∂u

(
ci, ni

)
∂ni

dni

dτ

= ∂u
(
ci, ni

)
∂ci

(
−wini + dg

dτ

)
,

which corresponds to equation (16) in the text, using consumption as lifetime welfare numeraire:
λi = ∂u(ci,ni)

∂ci
.

Hence, in this economy

dW λ

dτ
=
∑

i

ωidV
i|λ

dτ
=
∑

i

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸

ΞRD

,

where ωi =
∂W
∂V i

∂u(ci,ni)
∂ci

1
I

∑
i
∂W
∂V i

∂u(ci,ni)
∂ci

(with ∂W
∂V i = 1), and where

ΞE =
∑

i

(
−wini + dg

dτ

)
= τ

∑
i

widn
i

dτ

ΞRD = CovΣ
i

[
ωi,−wini + dg

dτ

]
= CovΣ

i

[
ωi,−wini

]
,

which corresponds to equation (17) in the text.

D.2.2 Random Earnings

The optimal consumption-labor decision for each individual i is identical to the deterministic case
for a given realization of s. Hence,

(1 − τ)wi (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s) + ∂u

(
ci (s) , ni (s)

)
∂ni (s) = 0. (OA2)

OA-9



Hence, the labor supply function in state s is given by

ni (s) =
(

(1 − τ)wi (s)
α

) 1
σ−1

,

where the demogrant, which the same regardless of s by virtue of the symmetry assumptions, is
g (τ) = τ 1

I

∑
iw

i (s)ni (s), which in turn implies that

dg

dτ
= 1
I

(∑
i

wi (s)ni (s) + τ
∑

i

wi (s) dn
i (s)
dτ

)
.

We can express individual lifetime welfare gains dV i

dτ as

dV i

dτ
=
∑

s

π (s)
(
∂u
(
ci (s) , ni (s)

)
∂ci (s)

dci (s)
dτ

+ ∂u
(
ci (s) , ni (s)

)
∂ni

dni (s)
dτ

)

=
∑

s

π (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s)

dci (s)
dτ

+
∂u(ci(s),ni(s))

∂ni

∂u(ci(s),ni(s))
∂ci(s)

dni (s)
dτ


=
∑

s

π (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s)

−wi (s)ni (s) + (1 − τ)wi (s) dn
i (s)
dτ

+ dg

dτ
+

∂u(ci(s),ni(s))
∂ni

∂u(ci(s),ni(s))
∂ci(s)

dni (s)
dτ


=
∑

s

π (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s)

(
−wi (s)ni (s) + dg

dτ

)
,

which corresponds to equation (18) in the text, using perpetual consumption as lifetime welfare
numeraire: λi =

∑
s π (s) ∂u(ci(s),ni(s))

∂ci(s) .
Given the symmetry assumptions, in this economy

dW λ

dτ
=
∑

i

ωidV
i|λ

dτ
=
∑

i

dV i|λ

dθ
= ΞE ,

since ωi =
∂W
∂V i

∑
s

π(s)
∂u(ci(s),ni(s))

∂ci(s)
1
I

∑
i
∂W
∂V i

∑
s

π(s) ∂u(ci(s),ni(s))
∂ci(s)

(with ∂W
∂V i = 1) is identical across individuals, and where

dV i|λ

dτ
=
∑

s

ωi (s) dV
i|λ

1 (s)
dθ

, where dV
i|λ

1 (s)
dθ

= −wi (s)ni (s) + dg

dτ
.

Therefore

dW λ

dτ
= ΞE =

∑
s

ω1 (s)
∑

i

dV
i|λ

1 (s)
dθ︸ ︷︷ ︸

ΞAE

+
∑

s

ω1 (s)CovΣ
i

[
ωi

1 (s)
ω1 (s) ,

dV
i|λ

1 (s)
dθ

]
︸ ︷︷ ︸

ΞRS

,
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where ωi
1 (s) =

π(s)
∂u(ci(s),ni(s))

∂ci(s)∑
s

π(s) ∂u(ci(s),ni(s))
∂ci(s)

, ωi
1 (s) = 1

I

∑
i ω

i
1 (s), and where

ΞAE = τ
∑

s

ω1 (s)
∑

i

wi (s) dn
i (s)
dτ

ΞRS =
∑

s

ω1 (s)CovΣ
i

[
ωi

1 (s)
ω1 (s) ,−w

i (s)ni (s)
]
,

which corresponds to equation (19) in the text.

D.3 Application 3

In addition to market clearing, an equilibrium in this economy is characterized by i) the
borrowing/saving optimality conditions for both individuals:

u′
(
ci

0

)
q0 − β

∑
s

π (s)u′
(
ci

1 (s)
)

= ηi,

where ηi ≥ 0 denotes the Lagrange multiplier in the borrowing constraint (with η2 = 0), and ii) the
investment optimality condition for investors:

u′
(
c1

0

)
Υ′
(
k1

0

)
− β

∑
s

π (s)u′
(
c1

1 (s)
)
z (s) = 0.

Provided that the returns to investment are sufficiently attractive (which we always assume), the
investor’s borrowing constraint binds whenever b is sufficiently low, but ceases to bind at a level of
b we denote by bu.

We can express individual lifetime welfare gains dV i

db
as

dV i

db
= u′

(
ci

0

)
dci

0 − β
∑

s

π (s)u′
(
ci

1 (s)
)
dci

1 (s) ,

where consumption changes are given by

dci
0 = dq0

db
bi

1 + q0
dbi

1
db

− Υ′
(
ki

0

) dki
0

db

dci
1 (s) = z (s) dk

i
0

db
− dbi

1
db
.

Hence, normalized individual lifetime welfare gains take the form

dV i|λ

db
=

dV i

db

λi
= ωi

0dc
i
0 + ω1

∑
s

ωi
1 (s) dci

1 (s) ,
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where ωi
0 = u′(ci0)

λi
and ωi

1 = β
∑

s
π(s)u′(ci1(s))

λi
with λi = u′ (ci

0
)

+ β
∑

s π (s)u′ (ci
1 (s)

)
and where

ωi
1 (s) = π(s)u′(ci1(s))∑

s
π(s)u′(ci1(s)) .

Hence, in this economy

dW λ

db
=
∑

i

ωidV
i|λ

db
=
∑

i

dV i|λ

db
+ CovΣ

i

[
ωi,

dV i|λ

db

]
,

where ωi =
∂W
∂V i

(u′(ci0)+β
∑

s
π(s)u′(ci1(s)))

1
I

∑
i
∂W
∂V i

(u′(ci0)+β
∑

s
π(s)u′(ci1(s))) with ∂W

∂V i = 1. Moreover

ΞE = ΞAE + ΞRS + ΞIS ,

where

ΞAE = ω0
∑

i

dci
0

db
+ ω1

∑
s

ω1 (s)
∑

i

dci
1 (s)
db

ΞRS = ω1
∑

s

ω1 (s)CovΣ
i

[
ωi

1 (s)
ω1 (s) ,

dci
1 (s)
db

]

ΞIS = ω0CovΣ
i

[
ωi

0
ω0
,
dci

0
db

]
+ ω1CovΣ

i

[
ωi

1
ω1
,
∑

s

ωi
1 (s) dc

i
1 (s)
db

]
,

where ωi
1 = 1

I

∑
i ω

i
1 and ωi

1 (s) = 1
I

∑
i ω

i
1 (s). Note that the impact of the perturbation on aggregate

consumption, which is the key input into the aggregate efficiency component, is given by

∑
i

dci
0

db
= −Υ′

(
k1

0

) dk1
0

db∑
i

dci
1 (s)
db

= z (s) dk
1
0

db
.

Note that we can use individual optimality (i.e., the envelope theorem) to express lifetime welfare
gains as

dV i

db
= u′

(
ci

0

)
dci

0 − β
∑

s

π (s)u′
(
ci

1 (s)
)
dci

1 (s)

= u′
(
ci

0

)(dq0

db
bi

1 + q0
dbi

1
db

− Υ′
(
ki

0

) dki
0

db

)
− β

∑
s

π (s)u′
(
ci

1 (s)
)(

z (s) dk
i
0

db
− dbi

1
db

)

=
(
u′
(
ci

0

)
q0 − β

∑
s

π (s)u′
(
ci

1 (s)
)) dbi

1
db︸ ︷︷ ︸

Direct Effect

+ u′
(
ci

0

) dq0

db
bi

1︸ ︷︷ ︸
Distributive Pecuniary Effect

,

where the direct effect is weakly positive for investors and zero for lenders, and the distributive
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pecuniary effect is negative for investors and positive for lenders, although zero sum in the aggregate
at date 0 since

∑
i

dq0
db
bi

1 = 0 (Dávila and Korinek, 2018). While this formulation is useful to
understand how individual lifetime utility changes, it is not useful to decompose welfare assessments
in the way introduced in this paper.

E Generalized Welfare Criteria: DS-planners

Here, we leverage the welfare decomposition to systematically construct non-welfarist welfare criteria
based on individual, dynamic, and stochastic weights. This approach allows us to formalize normative
objectives that isolate specific components of the welfare decomposition. Because this normative
approach entails defining weights for each time and history, for each individual, we say it is based
on Dynamic Stochastic Generalized Social Marginal Welfare Weights (dynamic–stochastic weights
or DS-weights, for short). These results have the potential to allow for disciplined discussions about
the mandates of independent technocratic institutions (central banks, financial regulators, other
regulatory agencies, etc.).

DS-planners: Definition. We begin by formally defining desirable perturbations for a planner
who adopts DS-weights, a DS-planner.

Definition. (Desirable perturbation for a DS-planner) A DS-planner finds a perturbation desirable
(undesirable) when dWDS

dθ > (<) 0, where

dWDS

dθ
=
∑

i

ωi
∑

t

ωi
t

∑
st

ωi
t

(
st
) dV i|λ

t

(
st
)

dθ
, (OA3)

where dV
i|λ
t (st)

dθ denotes the history welfare gains at history st in units of the history welfare numeraire,
defined in equation (6), and where ωi > 0, ωi

t > 0, and ωi
t

(
st
)
> 0 define individual, dynamic, and

stochastic weights that can potentially be functions of outcomes.

Since dV
i|λ
t (st)

dθ is expressed in units of the history welfare numeraire and because we require that∑
st ω

i
t

(
st
)

= 1, the stochastic weight ωi
t

(
st
)

defines a marginal rate of substitution between a unit
of history welfare numeraire at history st and a unit of history welfare numeraire across all date t
histories for individual i, as in the welfarist case. The dynamic weight ωi

t defines a marginal rate of
substitution between a unit of history welfare numeraire across all date t histories and, implicitly,
a unit of lifetime welfare numeraire for individual i.17 The individual weight ωi defines how a DS-

17Any choice of weights in which
∑

t
ωit = 1 and

∑
st ωit

(
st
)

= 1 ensures that interpersonal comparisons are made
in a common unit (or lifetime welfare numeraire). It is nonetheless possible to make meaningful comparisons when
dynamic weights do not add up to 1 over time.
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planner trades off lifetime welfare gains across individuals. The product ω̃i
t

(
st
)

= ωiωi
tω

i
t

(
st
)

defines
a dynamic-stochastic weight for individual i.18

Unlike the welfarist approach — which takes a social welfare function as primitive — welfare
assessments by DS-planners are defined in marginal form. In that sense, DS-planners extend the
generalized weight approach in Saez and Stantcheva (2016) to dynamic stochastic environments.
Formally, while that paper considers welfare objectives that directly define the individual weight
ωi, DS-planners also define (potentially non-welfarist) dynamic and stochastic weights for each
individual. The Online Appendix shows how to equivalently define DS-planners in terms of
instantaneous social welfare functions with generalized (endogenous) welfare weights and further
relates the results of this section to those in Saez and Stantcheva (2016).

DS-planners can be useful to both provide analytical characterizations and to characterize and
compute optimal policies guided by particular components of the welfare decomposition introduced
in this paper. Lemma 1 trivially implies that every welfarist planner is a DS-planner, while the
converse is not true, as we illustrate next.

AE/AR/NR Pseudo-welfarist DS-planners. Starting from equation (OA3), it is evident that
welfare assessments for DS-planners can be decomposed into ΞAE , ΞRS , ΞIS , and ΞRD components,
using the same definitions introduced in (10) and (11). Moreover, Proposition 5a) implies that it
is possible to construct welfare objectives in which ΞRD = 0, ΞIS = 0, or ΞRS = 0 by choosing
individual, dynamic, or stochastic weights that are invariant across individuals.

First, we focus on pseudo-welfarist DS-planners. These planners justify using particular
components of the welfare decomposition of a welfarist planner as the welfare assessment of a
particular DS-planner by making individual, dynamic, and/or stochastic weights equal to their cross-
sectional welfarist average.

Definition. (Pseudo-welfarist AE/AR/NR DS-planners) AE (aggregate efficiency), AR (aggregate
efficiency/risk-sharing), and NR (no-redistribution) pseudo-welfarist DS-planners are characterized
by the normalized weights:

ωi,AE = 1, ωi,AE
t = ωW

t , and ωi,AE
t

(
st
)

= ωW
t

(
st
)

AE Planner (OA4)

ωi,AR = 1, ωi,AR
t = ωW

t , and ωi,AR
t

(
st
)

= ωi,W
t

(
st
)

AR Planner (OA5)

ωi,NR = 1, ωi,NR
t = ωi,W

t , and ωi,NR
t

(
st
)

= ωi,W
t

(
st
)

NR Planner (OA6)

18Earlier versions of this paper defined desirable perturbations directly in terms of DS-weights, as in

dWDS

dθ
=
∑
i

∑
t

∑
st

ω̃it
(
st
) dV

i|λ
t

(
st
)

dθ
,

subsequently multiplicatively decomposing such weights. Both formulations are equivalent.
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where ωi,W
t and ωi,W

t

(
st
)

are dynamic and stochastic weights for the welfarist planner with social
welfare function W (·), and where ωW

t = 1
I

∑
i ω

i,W
t and ωW

t

(
st
)

= 1
I

∑
i ω

i,W
t

(
st
)

are their cross-
sectional averages.

Pseudo-welfarist planners are constructed so that specific (sums of) components of the welfare
decomposition for a given welfarist planner can be interpreted as welfare assessments for particular
DS-planners, as we formalize in Proposition 8.19

Proposition 8. (Relation between Welfarist Planners and Pseudo-welfarist AE/AR/NR DS-
planners)

a) [AE] The aggregate efficiency component ΞAE for a welfarist planner can be interpreted as
the welfare assessment of an AE pseudo-welfarist DS-planner, defined in (OA4), for whom
ΞRS = ΞIS = ΞRD = 0.

b) [AR] The sum of aggregate efficiency and risk-sharing components ΞAE + ΞRS for a welfarist
planner can be interpreted as the welfare assessment of an AR pseudo-welfarist DS-planner,
defined in (OA5), for whom ΞIS = ΞRD = 0.

c) [NR] The efficiency component ΞE for a welfarist planner can be interpreted as the welfare
assessment of a NR pseudo-welfarist DS-planner, defined in (OA6), for whom ΞRD = 0.

Proof. a) The welfare assessment for the AE pseudo-welfarist DS-planner corresponds to

dWAE

dθ
=
∑

t

ωW
t

∑
st

ωW
t

(
st
)∑

i

dV
i|λ

t

(
st
)

dθ
,

where ΞRS = ΞIS = ΞRD = 0, following Proposition 5a).
b) The welfare assessment for the AE pseudo-welfarist DS-planner corresponds to

dWAR

dθ
=
∑

t

ωW
t

∑
st

ωW
t

(
st
)∑

i

dV
i|λ

t

(
st
)

dθ
+
∑

t

ωW
t

∑
st

ωW
t

(
st
)
CovΣ

i

[
ωi,W

t

(
st
)

ωW
t (st)

,
dV

i|λ
t

(
st
)

dθ

]
,

where ΞIS = ΞRD = 0, following Proposition 5a).
c) The welfare assessment for the AE pseudo-welfarist DS-planner corresponds to

dWNR

dθ
=
∑

t

ωW
t

∑
st

ωW
t

(
st
)∑

i

dV
i|λ

t

(
st
)

dθ
+
∑

t

ωW
t

∑
st

ωW
t

(
st
)
CovΣ

i

[
ωi,W

t

(
st
)

ωW
t (st)

,
dV

i|λ
t

(
st
)

dθ

]

+
∑

t

ωtCovΣ
i

[
ωi,W

t

ωW
t

,
dV

i|λ
t

dθ

]
,

19The NR pseudo-welfarist planner is equivalent to using a Kaldor-Hicks criterion. This planner is non-welfarist and
non-paternalistic — see Remark 5.
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where ΞRD = 0, following Proposition 5a).

We conclude this section with two remarks.

Remark 5. (Paternalistic vs. Non-paternalistic DS-planners) DS-planners with non-welfarist
dynamic and stochastic weights are paternalistic since their welfare assessments are not based on
individual lifetime welfare gains. For instance, those planners may conclude that a perturbation
that individuals find Pareto-improving is undesirable. Similarly, the components of the welfare
decomposition are based on the weights used by the DS-planner, not those reflecting individual
preferences. Therefore, welfare assessments that do not value intertemporal-sharing or risk-sharing
as individuals do will be paternalistic.20 Importantly, the definition of DS-planners in equation
(OA3) respects individual intratemporal preferences since it uses dV

i|λ
t (st)

dθ as an input for the welfare
assessment, although this could be relaxed.

Remark 6. (Impossibility of defining specific pseudo-welfarist DS-planners) It is not possible to
define pseudo-welfarist DS-planners for whom exclusively the risk-sharing and intertemporal-sharing
components are zero. Ensuring that ΞRS = ΞIS = 0 requires using dynamic and stochastic weights
that are identical across individuals, which would impact ΞRD. A similar logic applies to other
components of the welfare decomposition. It is nonetheless possible to define DS-planners that are
not pseudo-welfarist but that, for instance, exclusively value aggregate efficiency and redistribution,
as we show below.

General DS-planners. While above we focus on pseudo-welfarist DS-planners, it is
straightforward to define DS-planners that are not pseudo-welfarist. In general, Proposition 5a)
provides the recipe to define planners for whom specific components of the welfare decomposition
are zero. For instance, one could choose the following weights to define an AE DS-planner:

ωi,AE (s0) = 1, ωi,AE
t (s0) = βt, and ωi,AE

t

(
st
)

= πt

(
st
)
,

for some β, plausibly β = 1
I

∑
i β

i. A similar logic can be used to define general (non-pseudo-welfarist)
AR and NR planners. Table OA-1 summarizes which components of the welfare decomposition
are zero for general DS-planners. Non-pseudo-welfarist DS-planners may be helpful in particular
applications, partly because they may be easier to operationalize.

20Welfare assessments by non-welfarist DS-planners (in fact, by non-utilitarian planners) introduce an independent
dimension of time inconsistency. There is scope to further explore the time inconsistency of welfare assessments.
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Table OA-1: Summary of DS-Planners

DS-Planners ΞAE ΞRS ΞIS ΞRD

Aggregate Efficiency (AE) ✓ = 0 = 0 = 0
Aggregate Efficiency/Risk-Sharing (AR) ✓ ✓ = 0 = 0

No-Redistribution (NR) ✓ ✓ ✓ = 0
Welfarist (W) ✓ ✓ ✓ ✓

Note: This table illustrates the non-zero components of the welfare decomposition for particular DS-planners.

DS-weights vs. Normalized Weights. Earlier versions of this paper defined DS-planners in
terms of DS-weights, ω̃i

t

(
st
)
, given by

ω̃i
t

(
st
)

︸ ︷︷ ︸
DS-weight

= ωi (s0)︸ ︷︷ ︸
individual

ωi
t (s0)︸ ︷︷ ︸

dynamic

ω(st)︸ ︷︷ ︸
stochastic

,

as the primitive to define DS-planners. Up to a choice of units for the (aggregate) welfare assessment,
there is a one-to-one relation between both approaches.

Note that these formulations respect intratemporal tradeoffs, by taking dV
i|λ
t (st)

dθ , as defined in

(6), as a primitive of the welfare assessment. By redefining dV
i|λ
t (st)

dθ as a weighted sum — based
on generalized weights, chosen by a planner — of changes in consumption and factor supply it is
possible to define a welfare objective based on generalized weights at the good/factor-history level.
This approach can be used to justify a welfare criterion that exclusively loads on changes in aggregate
consumption, disregarding the welfare impact of factor supply.

Institutional Design. A central objective of this paper is to provide a framework to systematically
formalize new welfare criteria to assess and conduct policy. This has the potential to guide the design
of independent technocratic institutions. In practice, such institutions must be given a “mandate”,
much like defining a set of normalized weights.

Therefore, a society may want to consider designing independent technocratic institutions that
have some normative considerations in their mandate but not others, along the lines of the logic
developed in this paper. For instance, the current “dual mandate” (stable prices and maximum
employment) of the Federal Reserve (as defined by the 1977 Federal Reserve Act) seems to be
better described by an aggregate efficiency DS-planner, rather than a welfarist planner, which
would care about cross-sectional considerations. Alternatively, an institution like the Federal
Emergency Management Agency (FEMA) has as part of its mandate to “support the Nation in a
risk-based, comprehensive emergency management system”, which unavoidably involves risk-sharing
considerations.
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Instantaneous Social Welfare Function Formulation. Section E shows that an approach
based on generalized marginal DS-weights defined over history welfare gains allows us to
systematically define non-welfarist normative objectives. Here, we show that it is possible to interpret
dWDS

dθ , defined in equation (OA3), as the welfare assessment of a planner with an (instantaneous)
social welfare function that i) takes as arguments individuals’ instantaneous utilities, not lifetime
utilities, and ii) features generalized (endogenous) welfare weights.

Formally, a linear instantaneous social welfare function, which we denote by I (·), is a linear
function of individuals’ instantaneous utilities, given by

I
({
ui

t

(
ci

t

(
st
)
, ni

t

(
st
))

; st
}

i,t,st

)
=
∑

i

∑
t

∑
st

αi
t

(
st
)
ui

t

(
ci

t

(
st
)
, ni

t

(
st
)

; st
)
, (OA7)

where the instantaneous Pareto weights αi
t

(
st
)

define scalars that are individual-, date-, and history-
specific. For any set of DS-weights, there exist instantaneous Pareto weights

{
αi

t

(
st
)}

i,t,st such
that dWDS

dθ , defined in equation (OA3), corresponds to the first-order condition of a planner who
maximizes a linear instantaneous social welfare function I (·) with instantaneous Pareto weights
αi

t

(
st
)

= ω̃i
t

(
st; θ

)
/

∂ui(st;θ)
∂cit

, since

dI (·)
dθ

=
∑

i

∑
t

∑
st

αi
t

(
st
) ∂ui

(
st
)

∂ci
t

dV
i|λ

t

(
st
)

dθ
. (OA8)

Moreover, at a local optimum, in which dWDS

dθ = 0, there exist instantaneous Pareto weights{
αi

t

(
st
)}

i,t,st such that the optimal policy satisfies the first-order condition formula of a linear
instantaneous social welfare function I (·), defined in equation (OA7). The instantaneous Pareto
weights in that case are evaluated at the optimum, so αi

t

(
st
)

= ω̃i
t

(
st; θ⋆

)
/

∂ui(st;θ⋆)
∂cit

, where θ⋆

denotes the value of θ at the local optimum.
These results are helpful because they show how to reverse-engineer Pareto weights of a linear

instantaneous social welfare function from DS-weights, while guaranteeing that any local optimum
can be interpreted as the solution to the maximization of a particular linear instantaneous social
welfare function. Because the instantaneous Pareto weights αi

t

(
st
)

are evaluated at the optimum
θ⋆, they are taken as fixed in the maximization of a linear instantaneous social welfare function.
In practice, it is impossible to define the instantaneous Pareto weights αi

t

(
st
)

without first having
solved for the optimum using our approach that starts with DS-weights as primitives. Relatedly, it is
typically impossible to translate DS-weights into instantaneous Pareto weights that are invariant to
θ and the rest of the environment. As mentioned above, there is scope to explore further the welfare
implications of using social welfare functions directly defined over consumption or factor supply at
histories.
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DS-PLANNERS
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AE
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s

Figure OA-2: DS-planners: Summary

Note: This figure summarizes the relations between the different DS-planners. The vertical dashed line separates non-
paternalistic planners from paternalistic planners. All welfarist planners, as well as no-redistribution (NR) planners,
are non-paternalistic. Aggregate efficiency (AE) and aggregate efficiency/risk-sharing (AR) planners are paternalistic.
Some pseudo-welfarist planners are non-paternalistic (welfarist, NR), while others are paternalistic (AE, AR). In this
figure, the α-DS-planners are pseudo-welfarist with respect to the utilitarian planner.

α-DS-planners. The planners introduced above by no means exhaust the set of new planners
that can be defined using DS-weights. In fact, it is possible to define a new planner that spans i)
AE, ii) AR, and iii) NR pseudo-welfarist planners, as well as iv) the associated normalized welfarist
planner. We refer to this planner as an α-DS-planner.

Definition. (α-DS-planner: definition) An α-DS-planner is a DS-planner for whom the individual,
dynamic, and stochastic weights are linear combinations of the weights of a normalized welfarist
planner and the weights of an AE pseudo-welfarist planner. An α-DS-planner has DS-weights
ωi,W,α

t

(
st
)

defined by

ωi,W,α
t

(
st
)

= (1 − α2)ωi,W,AE
t

(
st
)

+ α2ω
i,W
t

(
st
)

ωi,W,α
t = (1 − α3)ωi,W,AE

t + α3ω
i,W
t

ωi,W,α = (1 − α4)ωi,W,AE + α4ω
i,W ,

where α = (α2, α3, α4), and where α2 ∈ [0, 1], α3 ∈ [0, 1], α4 ∈ [0, 1].

Depending on the value of α, an α-DS-planner behaves as a particular pseudo-welfarist planner
or as a combination of pseudo-welfarist planners. When α = (0, 0, 0), we have a pseudo-welfarist
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AE DS-planner; when α = (1, 0, 0), we have an pseudo-welfarist AR DS-planner; when α = (1, 1, 0),
we have a pseudo-welfarist NR DS-planner; and when α = (1, 1, 1), we have a welfarist planner.
By varying α, it is possible to model planners who care about the different components to different
degrees. Moreover, estimating α from actual policies in the context of a particular policy problem
has the potential to uncover the weights that a particular policymaker attaches in practice to the
different components of the welfare decomposition.

F General Welfare Numeraires

In the body of the paper, we immediately adopt a triple of unit-consumption-based welfare
numeraires. Here, we proceed to derive the counterpart of Lemma 1 for general welfare numeraires.
The main difference with the body of the paper is that we introduce a triple of normalizing factors
(lifetime, date, and instantaneous) to allow for general welfare numeraires: λi, λi

t, and λi
t

(
st
)
.

The first step is to express a welfare assessment as

dW

dθ
=
∑

i

∂W
∂V i

λidV
i|λ

dθ
, where dV i|λ

dθ
=

dV i

dθ

λi

denotes individual lifetime welfare gains in units of the lifetime welfare numeraire, and where λi is
the normalizing factor — with units individual i utils

lifetime welfare numeraire — that allows us to express individual
lifetime welfare gains in a common unit. The only restriction when choosing the lifetime welfare
numeraire is that λi must be strictly positive for all individuals affected by the perturbation.

Next, to meaningfully compare welfare gains at particular dates or histories across individuals in
a common unit, we select date and history welfare numeraire for each date and history. Formally,
individual lifetime welfare gains in units of the lifetime welfare numeraire, dV i|λ

dθ , can be expressed as

dV i|λ

dθ
=
∑

t

λi
t

λi

∑
st

(
βi
)t
πt
(
st
)
λi

t

(
st
)

λi
t

dV
i|λ

t

(
st
)

dθ
,

where

dV
i|λ

t

(
st
)

dθ
=

∂uit(st)
∂cit

λi
t (st)

dci
t

(
st
)

dθ
+

∂uit(st)
∂nit

λi
t (st)

dni
t

(
st
)

dθ
(OA9)

denotes normalized history welfare gains at history st, expressed in units of the history
welfare numeraire, and where λi

t

(
st
)

is the instantaneous normalizing factor — with units
instantaneous individual i utils

instantaneous welfare numeraire at st — that allows us to express history welfare gains at history st in a
common unit at that history and λi

t is the date normalizing factor — with units individual i utils
date welfare numeraire at t

— that allows us to express welfare gains at all date-t histories in a common unit at that date. The
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only restriction when choosing the date and history welfare numeraires is that λi
t and λi

t

(
st
)

must
be strictly positive for all individuals affected by the perturbation at a particular date and history.

In the body of the paper, we assume that λi, λi
t and λi

t

(
st
)

are given by

λi =
∑

t

λi
t and λi

t =
(
βi
)t∑

st

πt

(
st
)
λi

t

(
st
)

and λi
t

(
st
)

= ∂ui
t

(
st
)

∂ci
t

, (OA10)

which ensures that ωi
t and ωi

t

(
st
)

define normalized discount factors and risk-neutral probabilities.
In general, the counterparts of the normalized individual, dynamic, stochastic weights in equations

(7), (8), and (9) for general welfare numeraires are

ωi =
∂W
∂V iλ

i

1
I

∑
i

∂W
∂V iλi

and ωi
t = λi

t

λi
and ωi

t

(
st
)

=
(
βi
)t
πt
(
st
)
λi

t

(
st
)

λi
t

,

where the interpretation of the weights as marginal rates of substitution is as in the body of the
paper, but now using different units.

More generally, the nominal unit (e.g., dollars) or particular commodities or bundles of
commodities may also be reasonable choices for welfare numeraires. An alternative choice of lifetime
welfare numeraire in models with a single consumption good is date-0 consumption, so λi = ∂ui0(s0)

∂ci0
.

In this case, the normalized stochastic weights remain unchanged, while the normalized individual
and dynamic weights take the form

ωi =
∂W
∂V i

∂ui0(s0)
∂ci0

1
I

∑
i

∂W
∂V i

∂ui0(s0)
∂ci0

and ωi
t =

∑
st
(
βi
)t
πt
(
st
)
λi

t

(
st
)

∂ui0(s0)
∂ci0

.

The main difference with respect to using perpetual consumption as the lifetime welfare numeraire
is that now the efficiency component is expressed in terms of willingness-to-pay at date 0. This may
be desirable in particular circumstances.

It is worth making three final remarks. First, note that welfare numeraires always exist: at worst,
one could choose a bundle of all goods/factors with non-negative marginal utility at a given history,
date, or on a lifetime basis. Second, one could potentially pick different numeraires in different dates
or histories, but it seems natural to choose a consistent numeraire to yield easily interpretable results.
Finally, while the choice of welfare numeraires does not change the directional welfare assessment of
a welfarist planner, the interpretation of the elements of the welfare decomposition is contingent on
such choice.
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G Extensions: Generalized Environments

In this section, we describe how to extend our results to more general environments.

G.1 Heterogeneous Beliefs

Here, we describe how to use the framework introduced in this paper to make welfare assessments
in environments with heterogeneous beliefs.21 To model heterogeneous beliefs, we assume that
individual preferences take the form

V i =
∑

t

(
βi
)t∑

st

πi
t

(
st
)
ui

t

(
ci

t

(
st
)
, ni

t

(
st
)
, st
)
,

where πi
t

(
st
)

denotes the beliefs held by individual i over histories, which are now individual-specific.
In this case, welfarist welfare assessments (respecting individual beliefs) are as described in the body
of the paper, simply using the following normalized weights:

ωi =
∂W
∂V i

∑
t

(
βi
)t∑

st π
i
t

(
st
) ∂uit(st)

∂cit

1
I

∑
i

∂W
∂V i

∑
t (βi)t∑

st π
i
t (st) ∂uit(st)

∂cit

ωi
t =

(
βi
)t∑

st π
i
t

(
st
) ∂uit(st)

∂cit∑
t (βi)t∑

st π
i
t (st) ∂uit(st)

∂cit

ωi
t

(
st
)

=
πi

t

(
st
) ∂uit(st)

∂cit∑
st π

i
t (st) ∂uit(st)

∂cit

.

Alternatively, a paternalistic planner is a DS-planner — introduced in Section E — who computes
welfare using different beliefs than those held by individuals (potentially using a common belief),

21A recent literature has explored how to make normative assessments in environments with heterogeneous beliefs.
See, among others, Brunnermeier, Simsek and Xiong (2014), Gilboa, Samuelson and Schmeidler (2014), Dávila (2023),
Blume et al. (2018), Caballero and Simsek (2019), and Dávila and Walther (2023).
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simply computes welfare assessment using the following normalized weights:

ωi =
∂W
∂V i
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)t∑
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i,P
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st
) ∂uit(st)

∂cit

1
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∂cit∑
st π

i,P
t (st) ∂uit(st)

∂cit

,

where πi,P
t

(
st
)

denotes the beliefs used by the planner to compute welfare for individual i at a
particular history. In a single belief case, πi,P

t

(
st
)

= πP
t

(
st
)
, ∀i. See e.g. Dávila and Walther (2023)

for an application of this approach to compute optimal leverage regulation.

G.2 General Preferences

G.2.1 Recursive utility: Epstein-Zin Preferences

Here, we describe how to allow for recursive preferences. In particular, we consider the widely used
Epstein-Zin preferences, defined recursively as follows:

V i (s) =

(1 − βi
) (
ui
(
ci (s) , ni (s)

))1− 1
ψi + βi

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) 1− 1
ψi

1−γi


1

1− 1
ψi

,

where γi modulates risk aversion and ψi modulates intertemporal substitution. We use s and s′ to
denote any two recursive states (Ljungqvist and Sargent, 2018).

In this case, we can recursively express the lifetime welfare gains of a perturbation in utils, as
follows:

dV i (s)
dθ

= ∂V i (s)
∂ci (s)

dui|λ (s)
dθ

+
∑
s′

∂V i (s)
∂V i (s′)

dV i (s′)
dθ

, (OA11)

where

∂V i (s)
∂ci (s) =

(
1 − βi

) (
V i (s)

) 1
ψi
(
ui (s)

)− 1
ψi
∂ui (s)
∂ci

∂V i (s)
∂V i (s′) = βi

(
V i (s)

) 1
ψi

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) γi− 1
ψi

1−γi

π
(
s′|s

) (
V i (s′))−γi

,
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and where
dui|λ (s)
dθ

= dci
t (s)
dθ

+
∂V i(s)
∂ni(s)
∂V i(s)
∂ci(s)

dni
t (s)
dθ

.

The structure of equation (OA11) immediately implies that dV i(s)
dθ can be expressed as a linear

transformation of history welfare gains, which in turn guarantees that dV i(s)
dθ can be written as in

Lemma (1). It is easiest to leverage equation (13) to compute normalized weights via state-prices
for any date and state, as follows:

qi (s′|s
)

=
∂Vi(s)
∂ci(s′)
∂V i(s)
∂ci(s)

=
∂V i(s)
∂V i(s′)

∂V i(s′)
∂ci(s′)

∂V i(s)
∂ci(s)

= βiπ
(
s′|s

)(V i (s′)
H (s)

) 1
ψi

−γi (
ci (s′)
ci (s)

)− 1
ψi

∂ui(s′)
∂ci

∂ui(s)
∂ci

,

where H (s) =
(∑

s′ π (s′|s)
(
V i (s′)

)1−γi
) 1

1−γi . It is straightforward to define DS-weights for even
more general preferences, including preferences that are not time-separable or recursive, as we do
next.

G.2.2 General Non-separable Preferences

It is possible to consider general non-expected utility non-time separable preferences of the form (we
abstract from factor supply only for simplicity, the results extend straightforwardly to that case):

V i = U i
({
ci

t

(
st
)}

t,st

)
.

Individual lifetime welfare gains take the form

dV i

dθ
=
∑

t

∑
st

∂U i

∂ci
t (st)

dci
t

(
st
)

dθ
.

From here it is evident that Lemma 1 applies, with normalized weights of the form

ωi =
∂W
∂V i

∑
t

∑
st

∂U i

∂cit(st)
1
I

∑
i

∂W
∂V i

∑
t

∑
st

∂U i

∂cit(st)

ωi
t =

∑
st

∂U i

∂cit(st)∑
t

∑
st

∂U i

∂cit(st)

ωi
t

(
st
)

=
∂U i

∂cit(st)∑
st

∂U i

∂cit(st)

.
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G.3 Multiple Goods/Factors

Here, we extend the result to economies with multiple goods/factors. We extend the baseline
environment by assuming individuals consume J ≥ 1 goods, indexed by j ∈ J = {1, . . . , J}, and
supply F ≥ 0 factors, indexed by f ∈ F = {1, . . . , F}, At all dates and histories. In this case,
preferences are given by

V i =
∑

t

(
βi
)t∑

st

πt

(
st
)
ui

t

({
cij

t

(
st
)}

j
,
{
nif

t

(
st
)}

f
; st
)
, (Preferences)

where cij
t

(
st
)

and nif
t

(
st
)

respectively denote the consumption of good j and the amount of factor
f supplied by individual i at history st.

In this case, individual lifetime welfare gains are given by

dV i

dθ
=
∑

t

(
βi
)t∑

st

πt

(
st
)
λi

t

(
st
)
dV

i|λ
t

(
st
)
,

where

dV
i|λ

t

(
st
)

=
∑

j

∂uit(st)
∂cijt

λi
t (st)

dcij
t

(
st
)

dθ
+
∑

f

∂uit(st)
∂nift

λi
t (st)

dnif
t

(
st
)

dθ
,

which generalizes equation (6) in the text. Given this, Proposition 1 and all the other results follow
straightforwardly.

G.4 Perturbations to Probabilities

It is possible to consider perturbations that affect probabilities. Starting from equation (1), we can
express dV i

dθ as

dV i

dθ
=
∑

t

(
βi
)t∑

st

(
πt

(
st
)(∂ui

t (st)
∂ci

t

dci
t (st)
dθ

+ ∂ui
t (st)
∂ni

t

dni
t (st)
dθ

)
+ dπt (st)

dθ
ui

(
ci

t

(
st
)
, ni

t

(
st
)))

.

Hence, the definition of ΞRD and ΞIS apply unchanged, with the addition of the new term that
includes how the change in probabilities impacts lifetime and date t welfare gains, respectively. The
split between aggregate efficiency and risk-sharing now includes an additional term that takes the
form ∑

t

ωt

∑
i

∑
st

ζi
t (s) dπt

(
st
)

dθ
, where ζi

t = ui
(
ci

t

(
st
)
, ni

t

(
st
))

∑
st πt (st) ∂uit(st)

∂cit

.
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G.5 Zeros

G.5.1 Zero Weights

In the body of the paper, we exclusively consider social welfare functions in which ∂W
∂V i > 0, and

implicitly, since we assume that individual marginal utilities of consumption are strictly positive at
all times, normalized dynamic and stochastic weights such that ωi

t > 0 and ωi
t

(
st
)
> 0. Here, we

present a generalized decomposition that accommodates normalized weights to be zero for particular
individuals, dates, or histories. To allow for this possibility, we must appropriately define the set of
individuals over which sums and covariances are computed.22

Formally, a normalized welfare assessment takes the form:

dW λ

dθ
=
∑

i

ωidV
i|λ

dθ
=

∑
i|ωi>0

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i|ωi>0

[
ωi,

dV i|λ

dθ
,

]
︸ ︷︷ ︸

ΞRD

,

where CovΣ
i|ωi>0

[
ωi, dV i|λ

dθ

]
=
∑

i I
[
ωi > 0

]
Covi|ωi>0

[
ωi, dV i|λ

dθ

]
, where I [·] denotes an indicator, and

where ωi =
∂W
∂V i

λi

1∑
i
I[ωi>0]

∑
i|ωi>0

∂W
∂V i

λi
. In this case, both efficiency and redistribution exclusively account

for the lifetime welfare gains of those individuals for whom ωi > 0. Following the same steps as in
the baseline case, the efficiency component can be expressed as

ΞE =
∑

i|ωi>0

dV i|λ

dθ
=
∑

t

∑
i|ωi>0

ωi
t

dV
i|λ

t

dθ
=
∑

t

ωt

∑
i|ωi,ωit>0

dV
i|λ

t

dθ
+
∑

t

ωtCovΣ
i|ωi,ωit>0

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸

ΞIS

,

where ΞAE =
∑

t ωtΞAE
t and ΞRS =

∑
t ωtΞRS

t with

∑
i|ωi,ωi

t>0

dV
i|λ

t

dθ
=
∑
st

∑
i|ωi,ωi

t>0

ωi
t

(
st
) dV i|λ

t (st)
dθ

=
∑
st

ωt

(
st
) ∑

i|ωi,ωi
t,ωi

t(st)>0

dV
i|λ

t (st)
dθ︸ ︷︷ ︸

ΞAE
t

+
∑
st

ωt

(
st
)
CovΣ

i|ωi,ωi
t,ωi

t(st)>0

[
ωi

t (st)
ωt (st) ,

dV
i|λ

t (st)
dθ

]
︸ ︷︷ ︸

ΞRS
t

,

22We repeatedly use the fact that

∑
i

xiyi = 1
I+

∑
i|xi>0

xi
∑
i|xi>0

yi +
∑
i|xi>0

xi − 1
I+

∑
i|xi>0

xi

yi − 1
I+

∑
i|xi>0

yi

 ,

where I+ =
∑

i
I
[
xi > 0

]
.
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where ωt =
∑

i|ωi,ωit>0 ω
i
t and ωt

(
st
)

=
∑

i|ωi,ωit,ωit(st)>0 ω
i
t

(
st
)
, and where

CovΣ
i|ωi,ωi

t>0

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
=
∑

i

I
[
ωi, ωi

t > 0
]
Covi|ωi,ωi

t>0

[
ωi

t

ωt
,
dV

i|λ
t

dθ

]
.

CovΣ
i|ωi,ωi

t,ωi
t(st)>0

[
ωi

t (st)
ωt (st) ,

dV
i|λ

t (st)
dθ

]
=
∑

i

I
[
ωi, ωi

t, ω
i
t

(
st
)
> 0
]
Covi|ωi,ωi

t,ωi
t(st)>0

[
ωi

t (st)
ωt (st) ,

dV
i|λ

t (st)
dθ

]
.

In this case, only individuals with positive dynamic or stochastic weights enter into ΞAE , ΞRS , and
ΞIS .

It is worth highlighting that Proposition 2a) no longer holds when ωi = 0 for individuals. For
instance, a dictator who exclusively cares about individual i = 1, attributes all welfare gains to the
efficiency component (actually ΞAE) for individual 1, but the efficiency component for such a dictator
is different from the efficiency component of a utilitarian planner or any other welfarist planner who
puts strictly positive weight on all individuals. Propositions 2b) and c), as well as Propositions 4, 5,
and Proposition 6a) through d) still hold, but Proposition 6e) also fails.

The central takeaway from these results is that the welfare decomposition must be interpreted
only for the individuals for positive weights when i) planners completely disregard the welfare gains
by specific individuals, or ii) individuals do not value at all welfare gains at particular dates or states.
For instance, the redistribution component for a planner who exclusively cares about individuals i = 1
and i = 2 is exclusively based on the lifetime welfare gains of these two individuals, disregarding the
rest. The same logic applies to the remaining terms of the decomposition.

G.5.2 Zero Welfare Gains

One may be tempted to also condition the covariance decomposition on the welfare gains terms to
be non-zero, e.g. dV i

dθ ̸= 0, but this would lead to erroneous conclusions. For instance, it may be

that dV i|λ

dθ = 0 when dV
i|λ
t

dθ ̸= 0 or dV
i|λ
t (st)

dθ ̸= 0, which would yield incorrect results. An implication
of always considering all individuals with ωi > 0, even when dV i|λ

dθ = 0, is that ΞRD, as well as
the split of the efficiency among its three constituents will depend on the normalized weights of all
individuals in the economy, including those unaffected directly by the perturbation. However, the
efficiency component as a whole will not.

G.6 Other considerations

Idiosyncratic/Aggregate States In recursive economies with idiosyncratic (and potentially
aggregate) states (i.e., Aiyagari or Krusell-Smith style economies) individuals can be heterogeneous
at the time of making a welfare assessment for two different reasons. First, individuals can be
heterogeneous ex-ante (e.g., individuals can have different time-invariant preferences or face shocks
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that come from different distributions). Second, individuals can be heterogeneous ex-post (e.g.,
individuals can have different endowments or asset holdings at the time of the welfare assessment,
even though they face identical problems starting from a given idiosyncratic state). This distinction
is important to interpret correctly some of the results in this paper. For instance, 6d) only applies
when all individuals are identical because of predetermined reasons and when they all have the same
initial state. Formally, ex-ante heterogeneity of either form is captured by the index i in this paper. It
is possible to further refine the composition in environments that differentiate between idiosyncratic
and aggregate states along the lines of Section H.

Continuum of Individuals, Continuous Time, Continuum of States In order to highlight
the differences between averages and signs, we have considered an environment with countable
individuals, dates, and histories. It is straightforward to extend the results to environments with a
continuum of individuals, continuous time, and a continuum of histories. In fact, earlier versions of
this paper included examples of all three cases.

Non-differentiabilities It is possible to generalize the results to environments in which lifetime
or instantaneous utilities are not differentiable. For lifetime utilities, it is necessary to consider
global assessments, as described in Section I.3. For instantaneous utilities, it is typically possible
to incorporate non-differentiabilities using Leibniz rule — see Dávila and Goldstein (2023) for an
application.

H Extensions: Subdecompositions and Alternative
Decompositions

In this section, we describe how to further decompose the components of the welfare decomposition
introduced in this paper. At times, we refer to two properties of covariances:

CovΣ
i

[
xi, yizi

]
= Ei

[
yi
]
CovΣ

i

[
xi, zi

]
+ Ei

[
zi
]
CovΣ

i

[
xi, yi

]
+
∑

i

[(
xi − Ei

[
xi
]) (

yi − Ei

[
yi
]) (

zi − Ei

[
zi
])]

(OA12)

CovΣ
i

[
xi, yi

]
=
∑

i

[
Covi

[
xi, yi | zi

]]
+ CovΣ

i

[
Ei

[
xi | zi

]
,Ei

[
yi | zi

]]
, (OA13)

where X, Y , and Z denote random variables. The first property is established in Bohrnstedt and
Goldberger (1969). The second is the Law of Total Covariance, and is standard. Figure OA-3
illustrates the decompositions introduced in Subsections H.4 and H.5.

It is worth highlighting that Lemma 1 implies that any decomposition of welfare assessments
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Efficiency
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Expected
Redistribution

ΞER

Redistributive
Smoothing

ΞRM

Figure OA-3: Subdecomposition

Note: This figure illustrates how the welfare decomposition can be subdecomposed. Section H describes multiple ways
of subdecomposing the welfare decomposition and discusses alternative decompositions.

boils down to defining particular groupings of the triple sum:

dW λ

dθ
=
∑

i

ωi
∑

t

ωi
t

∑
st

ωi
t

(
st
) dV i|λ

t

(
st
)

dθ
.

H.1 Term Structure and Related Results

Here, we show that the welfare decomposition and each of its components has a term structure.
That is, it is possible to attribute welfare gains in the aggregate or for each of the components to
particular dates in the future. Formally, note that

dW λ

dθ
=
∑

t

ωt
dW λ

t

dθ
where dW λ

t

dθ
= ΞAE

t + ΞRS
t + ΞIS

t + ΞRD
t , (OA14)

where

ΞAE
t =

∑
st

ωt

(
st
)

ΞAE
t

(
st
)

where ΞAE
t

(
st
)

=
∑

i

dV
i|λ

t

(
st
)

dθ

ΞRS
t =

∑
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ωt

(
st
)

ΞRS
t

(
st
)

where ΞRS
t

(
st
)
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i

[
ωi

t

(
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)

ωt (st) ,
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i|λ
t

(
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)

dθ

]
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∑
st

ωt
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)
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)
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t

(
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)

= CovΣ
i
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ωi

t

ωt
,
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(
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)

ωt (st)
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i|λ
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)
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]

ΞRD
t =

∑
st

ωt
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)

ΞRD
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)

where ΞRD
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(
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)

= CovΣ
i
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t
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)

ωt (st)
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(
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.
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This formulation shows that a welfare assessment can be interpreted as the discounted sum, using
an aggregate discount factor — of date-specific welfare assessments, where each of these date-specific
assessments can be further decomposed into aggregate efficiency, risk-sharing, intertemporal-sharing,
and redistribution.

Transition vs. Steady State Welfare Gains. Equation (OA14) also allows us to decompose
the transition and steady-state impact of perturbations for aggregate assessments and each of the
components of the welfare decomposition. Formally, under the assumption that an economy reaches
a new steady-state at date T ⋆, it is possible to decompose welfare assessments into transition welfare
effects and steady-state welfare effects:

dW λ

dθ
=

T ⋆∑
t=0

ωt
dW λ

t

dθ︸ ︷︷ ︸
transition welfare gains

+
T∑

t=T ⋆

ωt
dW λ

t

dθ︸ ︷︷ ︸
steady-state welfare gains

.

It is worth highlighting that convergence to a new steady-state in terms of allocations does not
guarantee convergence of normalized weights. To facilitate comparisons, it seems more natural to
report the value of steady-state welfare effects expressed in perpetual units starting at T ⋆, rather

than starting at date-0, that is:
∑T

t=T⋆ ωt
dWλ

t
dθ∑T

t=T⋆ ωt
.

Stochastic Structure. Finally note that it is possible to express a welfare assessment as

dW λ =
∑

t

ωt

∑
st

ωt

(
st
) (

ΞAE
t

(
st
)

+ ΞRS
t

(
st
)

+ ΞIS
t

(
st
)

+ ΞRD
t

(
st
))
. (OA15)

This formulation shows that a welfare assessment can be interpreted as the discounted sum, using
aggregate time and stochastic discount factors — of history-specific welfare assessments, where each
of these history-specific assessments can be further decomposed into aggregate efficiency, risk-sharing,
intertemporal-sharing, and redistribution. This formulation allows us to attribute welfare gains due
to each of the components of the welfare decomposition to specific histories.

H.2 Individual Structure

Since each of the components of the welfare decomposition can be expressed as a triple-sum (over
individuals, dates, and histories), it is also possible to compute the individual contribution of
particular individuals to each of the components of the welfare decomposition. Formally, we can
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write

ΞAE =
∑

i

Ξi,AE where Ξi,AE =
∑

t

ωt

∑
st

ωt

(
st
) dV i|λ

t

(
st
)

dθ

ΞRS =
∑

i

Ξi,RS where Ξi,RS =
∑

t

ωt

∑
st

ωt

(
st
)(ωi

t

(
st
)

ωt (st) − 1
)
dV

i|λ
t

(
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)

dθ

ΞIS =
∑

i

Ξi,IS where Ξi,IS =
∑

t

ωt

(
ωi

t

ωt
− 1

)
dV

i|λ
t

dθ

ΞRD =
∑

i

Ξi,RD where Ξi,RD =
(
ωi − 1

) dV i|λ

dθ
,

where, by construction,
∑

i ξ
i,AE = 1 with ξi,AE = Ξi,AE

ΞAE ; and analogously for the other three
components.

H.3 Reallocation and Growth

In order to separate welfare gains due to reallocation from those due to changes in aggregates,
it may be useful to decompose how the changes in the level of consumption (analogously, factor
supply) are due to changes in the share of consumption across individuals or to changes in aggregate
consumption. Formally, we can define consumption and factor supply shares at a given history by
χi

t,c

(
st
)

= cit(st)
ct(st) , and χi

t,n

(
st
)

= nit(st)
nt(st) where ct

(
st
)

=
∑

i c
i
t

(
st
)

and nt
(
st
)

=
∑

i n
i
t

(
st
)
. Hence, by

applying the product rule, we can express dcit(st)
dθ and dnit(st)

dθ as

dci
t

(
st
)

dθ
=
dχi

t,c

(
st
)

dθ
ct

(
st
)

︸ ︷︷ ︸
=Reallocation

+χi
t,c

(
st
) dct

(
st
)

dθ︸ ︷︷ ︸
=Growth

dni
t

(
st
)

dθ
=
dχi

t,n

(
st
)

dθ
nt

(
st
)

︸ ︷︷ ︸
=Reallocation

+χi
t,n

(
st
) dnt

(
st
)

dθ︸ ︷︷ ︸
=Growth

.

Hence, combining these definitions with the definition of history welfare gains in (6) or (OA9), it
is possible to subdecompose each of the components of the welfare decomposition into terms that
capture reallocation or aggregate growth of consumption or factor supply.

H.4 Stochastic Decompositions

As implied, for instance, by equation (OA15), each of the components of the welfare decomposition
includes aggregate valuation considerations. Here, we formalize this insight by further decomposing i)
the aggregate efficiency component into an expected aggregate efficiency component and an aggregate
smoothing component, and ii) the redistribution component into an expected redistribution and a
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redistributive smoothing component. Similar decompositions can be constructed for intertemporal-
sharing and risk-sharing.

Aggregate Efficiency. The aggregate efficiency component, ΞAE , can be decomposed into i) an
expected aggregate efficiency component, ΞEAE , and ii) an aggregate smoothing component, ΞAM .
Formally, at date t:

ΞAE
t = Eπt(st)

[
ωt

(
st
)]

Eπt(st)

[∑
i

dV
i|λ

t

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞEAEt (Expected Aggregate Efficiency)

+Covπt(st)

[
ωt
(
st
)

πt (st) ,
∑

i

dV
i|λ

t

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAMt (Aggregate Smoothing)

,

where ΞAE =
∑
ωtΞAE

t . This decomposition is the standard asset pricing decomposition into the
expected payoff and a risk compensation. The expected aggregate efficiency component, ΞEAE

t ,
captures the expected welfare gain across histories at a particular date. The aggregate smoothing
component, ΞAM

t , captures whether aggregate efficiency gains take place in histories that a planner
values more in aggregate terms. It should be evident that aggregate smoothing, based on the
covariance of aggregate welfare gains across histories, is logically different from the risk-sharing
and intertemporal-sharing components, ΞRS and ΞIS , based on cross-sectional covariances.

The welfare gains associated with eliminating aggregate business cycles in a representative-agent
economy, (Lucas, 1987), arise from aggregate smoothing considerations. Finally, note it is possible
to generate a similar decomposition that captures the part of aggregate efficiency welfare gains that
are due to front-loading welfare gains, by using a covariance decomposition across dates.

Redistribution. Similarly to the aggregate efficiency component, the redistribution component
ΞRD is shaped by valuation considerations, in this case, at the individual level. Here, we decompose
ΞRD into i) an expected redistribution component, ΞER, and a redistributive smoothing component,
ΞRM . Formally, at date t:

ΞRD
t = Covi

[
ωi,
∑

t

ωi
tEπt(st)

[
ωt

(
st
)]

Eπt(st)

[
dV

i|λ
t

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞER (Expected Redistribution)

+ Covi

[
ωi,
∑

t

ωi
tCovπt(st)

[
ωt
(
st
)

πt (st) ,
dV

i|λ
t

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞRM (Redistributive Smoothing)

.

This is, again, a standard asset pricing decomposition. The expected redistribution component,
ΞER, captures the welfare gains due to the expected welfare gains across histories at a particular
date. When individuals with a high individual weight have higher expected welfare gains, a planner
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attributes this to the expected redistribution component. The redistributive smoothing component,
ΞRM , captures whether individual welfare gains take place in histories that are more desirable for
individuals with a higher individual weight. That is, the redistributive smoothing component will be
non-zero for perturbations that smooth individual consumption for individuals with high individual
weights.

H.5 Alternative Cross-Sectional Decompositions

Here, we provide two alternative cross-sectional decompositions of the risk-sharing and intertemporal-
sharing components.

First, using equation (OA12), it is possible to decompose ΞIS into i) a raw intertemporal-sharing
component, ii) a weight concentration component, and iii) a policy-weights coskewness component,
as follows

ΞIS =
∑

t

ωt

∑
st

ωt

(
st
)
CovΣ

i

[
ωi

t

ωt
,
dV

i|λ
t

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞRIS (Raw Intertemporal-sharing)

+
∑

t

ωt

∑
st

ωt

(
st
)
Covi

[
ωi

t

ωt
,
ωi

t

(
st
)

ωt (st)

]∑
i

dV
i|λ

t

(
st
)

dθ︸ ︷︷ ︸
=ΞWC (Weight Concentration)

+
∑

t

ωt

∑
st

ωt

(
st
)∑

i

(
ωi

t

ωt
− 1

)(
ωi

t

(
st
)

ωt (st) − 1
)(

dV
i|λ

t

(
st
)

dθ
− Ei

[
dV

i|λ
t

(
st
)

dθ

])
︸ ︷︷ ︸

=ΞPC (Policy-weights Coskewness)

.

The first component of ΞIS , ΞRIS , can be interpreted as an intertemporal-sharing component in
which welfare gains at date t are not risk-discounted (i.e., raw). Note that the history st determinant
of ΞIS relative to ΞRIS compare as follows

CovΣ
i

[
ωi

t

ωt
,
ωi

t

(
st
)

ωt (st)
dV

i|λ
t

(
st
)

dθ

]
vs. CovΣ

i

[
ωi

t

ωt
,
dV

i|λ
t

(
st
)

dθ

]
,

where it is clear that intertemporal-sharing corrects welfare gains by risk through ωit(st)
ωt(st) , while raw

intertemporal-sharing does not. Hence, the remaining two components, ΞW C and ΞP C , precisely
capture the difference due to such risk correction.

The ΞW C component corrects for the fact that dynamic and stochastic weights are cross-
sectionally correlated. Even though one may consider including ΞW C in the aggregate efficiency
component, there are two good reasons not to do so. First, it would require knowledge of the cross-
section of the dynamic and stochastic weights, which goes against expressing the aggregate efficiency
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component exclusively as a function of aggregate statistics. Second, ΞW C = 0 when markets are
complete, which highlights that ΞW C relies on valuation differences across individuals.

The ΞP C component is based on the coskewness between dynamic and stochastic weights and
the instantaneous welfare gain. Coskewness is a measure of how much three random variables jointly
change. For instance, ΞP C could be non-zero even when Covi

[
ωit
ωt
,

ωit(st)
ωt(st)

]
= 0. Also, coskewness is

zero when the random variables are multivariate normal (Bohrnstedt and Goldberger, 1969), so it
relies on higher-order moments.23 ΞW C is also zero if one of ωi

t, ωi
t

(
st
)
, or dV

i|λ
t (st)

dθ is constant across
individuals.

I Extensions: Additional Results

In this section, we discuss additional results.

I.1 Pareto Problem

When introducing the efficiency/redistribution decomposition, we claim that those allocations that
solve the Pareto problem, as defined in e.g. Ljungqvist and Sargent (2018) must feature a weakly
negative efficiency component for any feasible perturbation given endowments and technologies. The
Pareto problem consists of maximizing

max
{cit(st)}

∑
i

αiV i,

where V i is defined as in (1), and where at each history it must be that

∑
i

ci
t

(
st
)

= ct

(
st
)
, ∀t, ∀st,

where, given Inada conditions, it must be that ci
t

(
st
)
> 0. In endowment economies, aggregate

consumption ct
(
st
)

is predetermined, but more generally there could be more equations that
determine how ct

(
st
)

is produced. For simplicity, here we assume that instantaneous utility
exclusively depends on consumption, but it is straightforward to generalize the results.

Note that, at an optimum, it must be that

αi
(
βi
)t
πt

(
st
) ∂ui

t

(
st
)

∂ci
t (st)

= η̃t

(
st
)
,∀t, ∀st,

where η̃t
(
st
)

is the Lagrange multiplier in the resource constraint at history st. The optimality
23These terms are likely to be important in models that emphasize higher moments of the distribution of risks (e.g.,

Guvenen, Ozkan and Song (2014)).
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conditions can in turn be written as

ωiωi
tω

i
t

(
st
)

= ηt

(
st
)
,

where ηt
(
st
)

is a normalized version of η̃t
(
st
)
. Note that

∑
t

∑
st

ωiωi
tω

i
t

(
st
)

=
∑

t

∑
st

ηt

(
st
)

⇒ ωi =
∑

t

∑
st

ηt

(
st
)
,

which in turn implies that

ωi
tω

i
t

(
st
)

= ηt
(
st
)∑

t

∑
st ηt (st) ⇒ ωi

t =
∑

st ηt
(
st
)∑

t

∑
st ηt (st) and ωi

t

(
st
)

= ηt
(
st
)∑

st ηt (st) .

These results imply that ΞRD = ΞIS = ΞRS = 0. If there exists a feasible perturbation (holding
endowments and technologies fixed) of a particular allocation in which

∑
t

∑
st ηt

(
st
)
dct

(
st
)
> 0, this

would increase the value of the objective, which immediately concludes perturbations to solutions to
the Pareto problem must feature ΞE ≤ 0.

I.2 Role of Transfers

Here, we explain how the ability to costlessly transfer resources across individuals impacts the welfare
decomposition. Formally, if a DS-planner has access to a set of transfers T i

i

(
st
)

in units of the history
welfare numeraire (here assumed to be consumption), so that individual budget constraints have the
form

ci
t

(
st
)

= T i
i

(
st
)

+ . . . .

it follows immediately that the social value of such transfer equals the DS-weight of individual at
that particular history:

dWDS

dT i
i (st)

= ωiωi
tω

i
t

(
st
)

= ω̃i
t

(
st
)
.

When a planner can transfer resources costlessly across individuals, subject to
∑

i T
i
i

(
st
)

= 0, the
availability of transfers endogenously restricts the variation of DS-weights across different individuals.
For instance, a welfarist planner who can transfer resources freely across all individuals, at all dates
and histories will equalize the DS-weights across all individuals, at all dates and histories. Given
Proposition 5, this implies that this planner will only value aggregate efficiency. Similar conclusions
can be reached when a DS-planner only has access to a subset of transfers.
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I.3 Global Assessments

The body of the paper focuses on marginal welfare assessments because marginal welfare gains can be
computed unambiguously — see e.g. Schlee (2013), which shows that consumer surplus, equivalent
variation, and compensating variation are identical for marginal changes in a classical demand setup.
However, it is important to understand how to make non-marginal welfare assessments.

Even for a single individual, there is no unambiguous approach to measure welfare gains or losses
for non-marginal changes in meaningful units (money-metric) — see e.g., Silberberg (1972) or Mas-
Colell, Whinston and Green (1995). This phenomenon is typically illustrated by the discrepancy
between consumer surplus, equivalent variation, and compensating variation in classic demand
theory. The same logic extends to aggregate welfare assessments and to the welfare decomposition.
Despite this hurdle, it is possible to make judicious global welfare assessments.

In practice, it is possible to study global changes by parameterizing perturbations using a line
integral, as illustrated in Section 4. Assuming that perturbations can be scaled by θ ∈ [0, 1], where
θ = 0 corresponds to the status-quo and θ = 1 corresponds to a global non-marginal change, it is
possible to define a non-marginal welfare change as follows:

WDS (θ = 1) −WDS (θ = 0) =
∫ 1

0

dWDS (θ)
dθ

dθ,

where θ is an explicit argument of dWDS(θ)
dθ , defined as in (3) or (OA3). That is, by recomputing

dWDS(θ)
dθ or dWλ(θ)

dθ along a particular path, it is possible to come up with a social welfare measure
that is akin to consumer surplus, with the same logic applying to each of the components of the
welfare decomposition. While using different paths will typically yield different global answers to the
question of what are the gains from a global multidimensional perturbation, in practice it is often
possible to find monotonic paths of integration, as defined by Zajac (1979) and Stahl (1984). In that
case, there is no ambiguity on whether θ = 0 is socially preferred to θ = 1, or vice versa.

Two additional remarks are worth making. First, while the approach outlined here is the
easiest to implement, it is possible to follow Alvarez and Jermann (2004) to consider global
equivalent/compensating variation-like assessments for welfarist planners within the DS-weights
framework. This will only be valid for aggregate assessments, not necessarily each of the components
of the welfare decomposition.

Second, the potential for ambiguity of global assessments is not relevant if one is interested in
using DS-planners to solve optimal policy problems, since dWDS

dθ is unambiguously defined for any
policy perturbation. Hence, if there is a point at which dWDS

dθ = 0 given the set of policy instruments,
this will be a critical point and, under suitable second-order conditions, a local optimum. If there is
a single local optimum and it is possible to establish that the optimum is interior, this optimum will
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be global. If there are multiple local optima, one could use the value of the social welfare function
to rank them in the welfarist case. So welfarist planners can unambiguously rank any two policies
globally. Outside of the welfarist case, one can look for monotonic paths of integration (Zajac, 1979;
Stahl, 1984) to rank different local optima, so it is only when this is not possible to find such paths
that there may be some global ambiguity when ranking two particular policies for DS-planners.24 In
general, one can choose a set of reasonable policy paths (e.g., linear paths or bounded paths) and
compare the predictions for the associated welfare assessments both in aggregate and for each of the
components of the welfare decomposition.

I.4 Inequality and Bounds

Concerns related to inequality often take a prominent role when assessing the welfare impact of
policies. The welfare decomposition introduced in this paper highlights which particular forms of
inequality matter for the determination of welfare assessments and their components.

Formally, by using the Cauchy-Schwarz inequality — which states that |Cov [x, y]| ≤√
Var [x]

√
Var [y] — it is possible to provide bounds for ΞRS , ΞIS , and ΞRD based on the cross-

sectional dispersion of normalized weights and the welfare gains, as follows:

∣∣∣ΞRS
∣∣∣ ≤

∑
t

ωt
∑
st

SDΣ
i

[
ωi

t

(
st
)]

· SDΣ
i

[
dV i

t

(
st
)

dθ

]
∣∣∣ΞIS

∣∣∣ ≤
∑

t

SDΣ
i

[
ωi

t

]
· SDΣ

i

[
dV i

t

dθ

]
∣∣∣ΞRD

∣∣∣ ≤ SDΣ
i

[
ωi
]

· SDΣ
i

[
dV i

dθ

]
,

where SDΣ
i [·] denotes a cross-sectional standard deviation, where the variance is computed in sum

form. This result shows that inequality considerations matter for the aggregate assessments of
policies via the cross-sectional dispersion of normalized or the impact of a perturbation by itself.
While cross-sectional standard deviations can bound the welfare effect of perturbations, the welfare
decomposition is a function of covariances.

These bounds are helpful in practice because they can be computed using univariate statistics,
i.e., cross-sectional standard deviations, and do not require the joint distribution of DS-weights
and normalized consumption-equivalent effects, which are necessary to compute cross-sectional
covariances (a multivariate statistic).

24Stahl (1984) proves that there always exist monotonic paths of integration in a classical demand context. While
a formal proof of the existence of such paths for the general framework considered here is outside of the scope of this
paper, there is no reason to believe this result cannot be extended to more general environments.
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J Relation to Existing Work

J.1 Relation to Saez and Stantcheva (2016)

The notion of DS-planners introduced in Section E nests the generalized weight approach in Saez
and Stantcheva (2016) and extends it to dynamic stochastic environments. Formally, while that
paper considers welfare objectives that directly define the individual weight ωi, DS-planners also
define (potentially non-welfarist) dynamic and stochastic generalized weights, ωi

t and ωi
t

(
st
)
, for

each individual.25

Hence, DS-planners in i) static environments or ii) environments that exclusively feature
generalized individual weights (but welfarist dynamic and stochastic weights) can be interpreted
as special cases of the generalized weight approach in Saez and Stantcheva (2016). Although in that
second case, our results use a different choice of lifetime welfare numeraire: Saez and Stantcheva
(2016) naturally choose history consumption as their numeraire, but this choice is more subtle in
dynamic environments, as explained in Section F. DS-planners that feature generalized dynamic
and/or stochastic weights are not considered in that paper. It is also worth highlighting that their
paper does not feature any form of welfare decomposition, even for static environments, so every
result in Section 3 of this paper is unrelated to the results in Saez and Stantcheva (2016).

A central insight in Saez and Stantcheva (2016) is that by using (individual) generalized weights it
is possible to accommodate alternatives to welfarism, such as equality of opportunity, libertarianism,
or Rawlsianism, among others. Since our approach nests theirs, it can also accommodate these
possibilities. There is scope to integrate these alternatives into dynamic stochastic environments.

J.2 Relation to Lucas (1987) and Alvarez and Jermann (2004)

It is common in papers that make welfare assessments in dynamic stochastic environments to compute
welfare gains using consumption-equivalents, as in Lucas (1987), who measures the welfare gains
associated with a policy change — specifically, the welfare gains associated with eliminating business
cycles. Our approach, built using marginal arguments, connects directly to the results in Alvarez
and Jermann (2004), who provide a marginal formulation of the approach in Lucas (1987). While
the Lucas (1987) and Alvarez and Jermann (2004) approach is easily interpretable in representative
agent economies, it has the pitfall that consumption-equivalents cannot be meaningfully aggregated
when there are heterogeneous individuals. See, for instance, how Atkeson and Phelan (1994), Krusell
and Smith (1999), or Krusell et al. (2009) carefully avoid aggregating consumption-equivalent welfare

25In general, unless they are based on a social welfare function, welfare assessments based on generalized individual
weights (those considered in Saez and Stantcheva (2016)) are non-welfarist, yet they are Paretian and non-paternalistic.
Welfare assessments based on generalized dynamic and stochastic weights (those considered in Section E of this paper)
are non-welfarist, and typically non-Paretian and paternalistic.
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gains across different individuals.
To illustrate these arguments, here we consider a perturbation for a given individual i, who

could be a representative agent or not. We abstract from factor supply, for simplicity, and consider
preferences of the form

V i =
∑

t

(
βi
)t∑

st

πt

(
st
)
ui
(
ci

t

(
st
))
.

We suppose that the consumption of individual i at date t and history st can be written as

ci
t

(
st
)

= (1 − θ) ci
t

(
st
)

+ θci
t

(
st
)
,

where both ci
t

(
st
)

and ci
t

(
st
)

are sequences measurable with respect to history st. The sequence
ci

t

(
st
)

can be interpreted as a given initial consumption path — when θ = 0 — and the sequence
ci

t

(
st
)

can be interpreted as a final consumption path — when θ = 1. In the case of Lucas (1987),
θ = 1 corresponds to fully eliminating business cycles.

First, we compute the marginal gains from marginally reducing business cycles using a
multiplicative consumption-equivalent, as in Lucas (1987) and Alvarez and Jermann (2004). Next,
we compute the marginal gains using an additive consumption-equivalent.

Multiplicative Compensation. Lucas (1987) proposes using a time-invariant equivalent
variation, expressed multiplicatively as a constant fraction of consumption at each date and history
as follows

∑
t

(
βi
)t∑

st

πt
(
st
)

ui
(
cit
(
st
) (

1 + Λi (θ)
))

=
∑
t

(
βi
)t∑

st

πt
(
st
)

ui
(

(1 − θ) cit
(
st
)

+ θcit
(
st
))

, (OA16)

where Λi (θ) implicitly defines the welfare gains associated with a policy indexed by θ. The exact
definition in Lucas (1987) corresponds to solving for Λi (θ = 1).26

Following Alvarez and Jermann (2004), the derivative of the RHS of equation (OA16) is given by

∑
t

(
βi
)t∑

st

πt

(
st
)
ui′
(
(1 − θ) ci

t

(
st
)

+ θci
t

(
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)) dci

t

(
st
)

dθ
, (OA17)

where dcit(st)
dθ = ci

t

(
st
)

− ci
t

(
st
)
.

26Alternatively, one could define a compensating variation as∑
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.
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Analogously, the derivative of the LHS of equation (OA16) is given by

∑
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βi
)t∑
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πt

(
st
)
ui′
(
ci

t

(
st
) (

1 + Λi (θ)
))
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(
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) dΛi

dθ
. (OA18)

Hence, combining (OA17) and (OA18) and solving for dΛi
dθ , yields the marginal cost of business cycles,

as defined in Alvarez and Jermann (2004). Formally, we can express dΛi
dθ as

dΛi

dθ
=
∑
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(
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)t∑
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(
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, (OA19)

where DS-weights are given by

ω̃i
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(
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. (OA20)

Additive Compensation. Here, we would like to contrast the approach in Lucas (1987) to one
that relies on a time-invariant equivalent variation, expressed additively in terms of consumption at
each date and history as follows:
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Following the same steps as above to find the counterpart of equation (OA19), we find that
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where DS-weights are given by
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Comparison and Implications. We focus on comparing equations (OA19) and (OA21) when
θ = 0 — similar insights emerge when θ ̸= 0. When θ = 0, equations (OA20) and (OA22) become
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(
st
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ui′
(
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)
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(multiplicative) (OA23)
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∑
t (βi)t∑

st πt (st)ui′
(
ci

t (st)
) . (additive) (OA24)

Two major insights emerge from equations (OA23) and (OA24). First, the DS-weights defined for
the additive case in equation (OA24) exactly correspond to the product of the normalized dynamic
and stochastic weights for a welfarist planner, as defined in (8) and (9). Second, the denominator
of the DS-weights in the multiplicative case is multiplied by ci

t

(
st
)

at all dates and histories. This
captures the fact that the welfare assessment is computed as a fraction of consumption at each date
and history, not in units of the consumption good. The presence of ci

t

(
st
)

in the denominator is
what complicates the aggregation of welfare assessments using the Lucas (1987) approach.

While both Lucas (1987) and Alvarez and Jermann (2004) study representative-agent
environments, others have used a similar approach in environments with heterogeneity; see e.g.,
Atkeson and Phelan (1994), Krusell and Smith (1999), or Krusell et al. (2009), among many others.
However, as highlighted by these papers, a well-known downside of the Lucas (1987) approach is that
it does not aggregate meaningfully because individual welfare assessments are reported as constant
shares of individual consumption. Our approach, implicitly based on an additive compensation,
allows for meaningful aggregation among heterogeneous individuals.

Relation to EV, CV, and CS. Finally, note that the analysis in this section illustrates how
the marginal approach relates to the conventional approaches in classic demand theory: equivalent
variation (EV), compensating variation (CV), and consumer surplus (CS). The approach of Lucas
(1987) and Alvarez and Jermann (2004), and the alternative version described in Footnote 26 are the
dynamic counterpart of compensating and equivalent variations, expressed in proportional terms, in
a dynamic stochastic environment. Hence, the analysis of this section shows that a DS-planner can
be used to operationalize the counterpart of all three notions — either proportionally or additively
— in dynamic stochastic environments. As expected, these considerations only matter away from
the θ = 0 case. However, the consumer surplus approach yields the most straightforward approach
to making global assessments, as explained in Section I.3.
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J.3 Relation to Existing Welfare Decompositions

Our paper is not the first to introduce a decomposition of welfare assessments in different components.
In fact, most of the existing literature that applies welfare decompositions to specific environments
follows versions of the decompositions introduced by Benabou (2002) and Floden (2001). There
is also the more recent decomposition introduced by Bhandari et al. (2021). We discuss how our
approach is related to both of these next.

Benabou (2002)/Floden (2001). The Benabou (2002)/Floden (2001) approach is based on first
computing certainty-equivalent consumption levels for individuals and then building measures of
inequality from the distribution of such certainty-equivalents. The starting point for the Benabou
(2002) approach is the (incorrect) presumption that the welfarist approach cannot distinguish the
effects of policy that operate via efficiency, missing markets, and redistribution. Benabou (2002)
explicitly writes:

“I will also compute more standard social welfare functions, which are aggregates of
(intertemporal) utilities rather than risk-adjusted consumptions. These have the clearly
desirable property that maximizing such a criterion ensures Pareto efficiency. On the
other hand, it will be seen that they cannot distinguish between the effects of policy that
operate through its role as a substitute for missing markets, and those that reflect an
implicit equity concern.”

In this paper, we have shown that it is possible to distinguish — using standard social welfare
functions — the effects of policy that operate through efficiency, including in economies with missing
markets, and redistribution/equity. As Benabou (2002) points out, his approach may conclude that
Pareto-improving policies are undesirable: this can never occur for welfarist planners, as explained in
Section 3. It is only when considering non-welfarist planners — such as some DS-planners introduced
in Section E — that perturbations that individuals find Pareto-improving are undesirable for a
particular DS-planner. In those cases, our welfare decomposition is precise in the way in which such
departures take place.

In terms of properties, it is evident that the Benabou (2002)/Floden (2001) approach does not
satisfy Proposition 4a), in which we show that welfarist planners conclude that the risk-sharing
and intertemporal-sharing components are zero when markets are complete; Proposition 4b), in
which we show that welfarist planners conclude that intertemporal-sharing component is zero when
individuals can freely trade a riskless bond; and Proposition 2a), in which we show that different
welfarist planners exclusively disagree on the redistribution component, among others. The Benabou
(2002)/Floden (2001) approach is only invariant to preference-preserving transformations because it
is exclusively defined for environments in which all individuals have identical utility functions.
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Bhandari et al. (2021). The decomposition introduced by Bhandari et al. (2021) considers a
utilitarian planner with arbitrary Pareto weights αi, although it seems obvious to apply to general
social welfare functions. In contrast to Benabou (2002)/Floden (2001), the approach of Bhandari
et al. (2021) is defined for general dynamic stochastic economies in which individuals may have
different preferences.

For simplicity, we consider a scenario in which there is a single consumption good. In this
environment, Bhandari et al. (2021) propose to first decompose the consumption of a given individual
at a given date and history as

ci
t

(
st
)

= C × wi ×
(
1 + εi

t

(
st
))
, (OA25)

where C captures aggregate lifetime consumption, wi captures the share of individual i’s consumption
relative to the aggregate and 1 + εi

t

(
st
)

captures any residual variation. While equation (OA25)
may resemble the triple of individual, dynamics, and stochastic weights introduced in Lemma
1, it is conceptually different. In particular, the decomposition in equation (OA25) decomposes
consumption, ci

t

(
st
)
, while our weights decompose social marginal valuations. Only heuristically,

the term wi in (OA25) can be mapped to our normalized individual weight, while 1 + εi
t

(
st
)

can be
mapped to both dynamic and stochastic weights.

Bhandari et al. (2021) then introduce a second-order Taylor expansion around a midpoint to
write welfare differences (partially adopting the notation in that paper) as follows:

WB − WA ≃
∫
ϕiΓdi︸ ︷︷ ︸

agg. efficiency

+
∫
ϕi∆idi︸ ︷︷ ︸

redistribution

+
∫
ϕiγiΛidi︸ ︷︷ ︸

insurance

, (OA26)

where ϕi = αi
∑

t

∑
st

∂ui(st)
∂cit
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denotes quasi-weights — using the terminology in Bhandari et al.

(2021) — and γi is a measure of risk-aversion, −ci
t

(
st
) ∂2ui(st)

∂(cit)2 /
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∂cit
, and where Γ = lnCB − lnCA,

∆i = lnwB
i − lnwA

i , and Λi = −1
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− Vari

[
ln cA

i

]]
. That paper decomposes WB − WA

into three terms as follows:

1 =
∫
ϕiΓdi

WB − WA︸ ︷︷ ︸
agg. efficiency

+
∫
ϕi∆idi

WB − WA︸ ︷︷ ︸
redistribution

+
∫
ϕiγiΛidi

WB − WA︸ ︷︷ ︸
insurance

. (OA27)

Bhandari et al. (2021) establish three properties of the decomposition in equation (OA27): a) a
welfare change that affects aggregate consumption C but not {wi, εi}i is exclusively attributed to
aggregate efficiency; b) a welfare change that affects expected shares {wi}i but not C and {εi}i

is exclusively attributed to redistribution; c) a welfare change that affects {εi}i but not C and
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{wi}i is exclusively attributed to insurance. The insurance component in Bhandari et al. (2021)
is heuristically related to the risk-sharing and intertemporal-sharing components in our paper.
Bhandari et al. (2021) also establish a fourth property, reflexivity, which our approach also satisfies.
These properties are conceptually the counterpart of Proposition 5a), since they consider properties
of a decomposition for particular perturbations. However, it should be evident that properties a), b),
and c) in Bhandari et al. (2021) neither imply nor are implied by the properties that we establish in
Proposition 5a). This occurs because properties a), b), and c) consider proportional changes while
Proposition 5a) considers changes in levels, with both the proportional and level approaches being
different but reasonable.27

The decomposition of Bhandari et al. (2021) does not have a counterpart to Propositions 4 and
5. That is, it is possible to consider complete market economies in which the decomposition of
Bhandari et al. (2021) attributes welfare changes to their insurance component. More importantly,
it follows from (OA27) that changing the Pareto weights αi that a utilitarian planner assigns to
an individual or simply multiplying the lifetime utility of a single individual by a constant factor
— a preference-preserving transformation that has no impact on allocations — will change all
three elements (aggregate efficiency, redistribution, insurance) of the decomposition introduced by
Bhandari et al. (2021). Formally, it follows from the definition of ϕi above that a change in αi or
a linear transformation of utilities will change ϕi and consequently each of the three elements on
the right-hand side of equation (OA26). Critically, WB − WA in equation (OA26) (as well as ϕi)
is expressed in utils, not consumption units or any other common numeraire.28 Hence, changes in
Pareto weights or utility transformations directly affect all the components of the decomposition,
including aggregate efficiency and insurance in equation (OA27).

27Note that by writing cit
(
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= C × wi ×
(
1 + εit

(
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, we can express dci
t(st)
dθ

as follows:
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+ C × dwi
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×
(
1 + εit

(
st
))

+ C × wi ×
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(
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.

In this case, even when dwi
dθ

= d(1+εi
t(st))
dθ

= 0, a change in dC
dθ

, by virtue of being proportional to existing consumption,

does not imply a uniform change in dci
t(st)
dθ

across individuals, dates, and histories. A similar logic applies to changes

in dwi
dθ

and dεi
t(st)
dθ

. More generally, the decompositions yield different conclusions. For instance, the decomposition
in Bhandari et al. (2021) attributes welfare gains associated to smoothing business cycles in a representative agent
economy — as in Lucas (1987) — to insurance, while our decomposition attributes such gains to the aggregate insurance
subcomponent of aggregate efficiency.

28Bhandari et al. (2021) explain how WB − WA is measured in utils as follows:
“Quasi-weights {ϕi}i convert percent changes {Γ, ∆i, Λi}i that into a welfare change WB−WA, measured
in utils.”
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