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1 Introduction

The envelope theorem is a central tool for comparative statics of unconstrained and constrained
optimization problems. It states that, at an optimum, the impact of a parameter perturbation
on the value of an optimization problem’s objective is solely attributed to its direct effect since
optimization ensures that the indirect effect attributed to changes in the choice variables is zero.
But what can be said about the impact of a parameter perturbation on the value of the objective
away from an optimum?

Away from an optimum, the impact of a parameter perturbation on the value of the objective
depends on both i) its direct effect, defined as the change in the value of the objective not
attributed to changes in the choice variables, and ii) its indirect effect, defined as the change
in the value of the objective attributed to changes in the choice variables. If a parameter
perturbation exclusively impacts the objective function but not the constraints, its direct effect
can be unambiguously attributed to the change in the value of the objective that would have
ensued if keeping choice variables fixed. However, the split between the direct and indirect effects
for parameter perturbations that impact a binding constraint is ambiguous, because it is impossible
to define a notion of the direct effect of a perturbation in which the choice variables remain fixed
since choice variables must adjust to satisfy the constraint.1 In this case, there are multiple valid
notions of the direct (and indirect) effect of the perturbation, as we illustrate in Section 2.3.

The main contribution of this paper is to show that there exists an unambiguous notion of
the direct effect — one that treats choice variables formulated as shares as if they remained fixed
— of parameter perturbations for constrained optimization problems with linearly homogeneous
constraints, that is, constraints that are homogeneous of degree 1. Since our result characterizes
the impact of a parameter perturbation on the value of an optimization problem’s objective —
although away from an optimum — we refer to it as a “non-envelope theorem”, to distinguish it
from standard envelope theorems, which only apply at an optimum.

Our result hinges on the fact that Euler’s theorem for homogeneous functions makes it possible
to reformulate linearly homogeneous constraints as constraints on shares, rather than levels. Hence,
by performing a change of variables from levels to shares, it is possible to translate a parameter
perturbation that impacts a binding constraint into a parameter perturbation that solely impacts
the objective function. And in the latter case, the direct effect of the perturbation can be
unambiguously attributed to the change in the value of the objective that treats choice variables
— shares in the reformulated problem — as if they remained fixed.

The body of this short paper contains one formal theorem and four applications.2 Theorem
1Formally, if the constraint of an optimization problem is g (x1, x2) = θ, for some function g (·) with ∂g

∂x1
̸= 0 and

∂g
∂x2

̸= 0 and a parameter θ, it is impossible to construct perturbations of θ in which the choice variables x1 and x2

remain fixed. That is, in response to a dθ perturbation: ∂g
∂x1

dx1 + ∂g
∂x2

dx2 = dθ. Hence, whenever dθ ̸= 0 it must be
that either dx1 ̸= 0 or dx2 ̸= 0, or both.

2For clarity of exposition, we present the formal result in Section 2 for a problem with a single linearly homogeneous
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1 formally characterizes the direct and indirect effects of a parameter perturbation on the value
of the objective for an optimization problem in which all choice variables are linked via a linearly
homogeneous constraint. Since Theorem 1 relies on reformulating the optimization problem in
terms of shares, in Section 2.5 we explain the rationale behind the use of shares.

The usefulness of our contribution lies in whether having a clear notion of the direct effect
of a perturbation — that is, the change in the value of the objective induced by a parameter
perturbation not attributed to changes in choice variables — has practical value in interesting
economic applications. With that goal in mind, we apply the non-envelope theorem result to
four economic applications. Our first and second applications consider single-agent optimization
problems. In this case, the non-envelope result is useful to study perturbations when agents are
behavioral, failing to fully optimize. Our third and fourth applications are planning problems. In
this case, the non-envelope result is useful to study perturbations to inefficient allocations.

While the nature of the objective and constraints in each application is different, it is possible
to systematically use Theorem 1 to define the direct impact on the value of the objective for any
perturbation. The applications highlight that the economic nature of the shares needed to construct
the non-envelope result substantially differs across applications (expenditure shares, input shares,
consumption shares, and factor use shares), but all follow from the linear homogeneity of the
relevant constraints.

Our first application considers a classical demand theory problem, in which a consumer decides
how to spend an amount of wealth among many different goods. The non-envelope theorem
characterizes the direct change in consumer welfare induced by marginal changes in i) wealth
and ii) goods prices, even when consumers are not optimizing. Our second application considers a
classical cost minimization problem, in which a firm decides how to choose inputs to minimize the
cost of producing a given amount of output. The non-envelope theorem allows us to characterize
the direct change in firm costs induced by marginal changes in i) output and ii) factor prices, even
when firms are not optimizing. In the consumer case, our result may be particularly helpful in cases
in which individual choices do not emerge from maximizing experienced utility, but are determined
by rules-of-thumb or other forms of decision utility (Chetty, 2015; Bernheim and Taubinsky, 2018).
Similarly, in the cost minimization case, our result can be used to define notions of marginal cost
when firms do not make choices that lead to minimizing costs (Heidhues and Kőszegi, 2018).

Our third application considers a planning problem in an exchange economy in which a planner
decides how to allocate a fixed amount of many different goods across different individuals. The non-
envelope theorem allows us to characterize the direct welfare impact of changes in the aggregate
endowment of goods, regardless of whether the allocation of consumption across consumers is
efficient or not. This application illustrates how our result can be used to decompose efficiency

constraint. It is straightforward to extend the logic of our result to problems with multiple linearly homogeneous
constraints, as in Applications 3 and 4 in Section 3. See Dávila and Schaab (2023a) for how the non-envelope result
presented in this paper can be repeatedly applied in a rich model with many linearly homogeneous constraints.
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gains into gains due to better allocating goods among individuals and gains due to having more of
the different goods. Our fourth and final application considers a planning problem in a production
economy. In this case, the non-envelope theorem allows us to characterize the direct welfare impact
of changes on technology or factor supplies, even when factors of production are misallocated across
uses. This type of comparative static exercises is central to the work on factor reallocation and
misallocation, as in Hsieh and Klenow (2009), Acemoglu and Restrepo (2018), and Baqaee and
Farhi (2020), among many others.

Related literature. Our result is most connected to classical formulations of the envelope
theorem, as in Samuelson (1947), Silberberg (1974), or Benveniste and Scheinkman (1979), among
others. Envelope theorems are typically stated in mathematical economic textbooks — see, for
instance, Simon and Blume (1994), Corbae, Stinchcombe and Zeman (2009), or Sydsaeter et al.
(2016) — or in mathematical appendixes, like that of Mas-Colell, Whinston and Green (1995). See
Milgrom and Segal (2002) and Sinander (2022) for formulations of the envelope theorem and its
converse under minimal assumptions. While models are at times formulated in terms of shares
rather than levels, we are unaware of any existing work showing that it is possible to systematically
define the direct effect of a parameter perturbation on the value of an optimization problem by
reformulating models with linearly homogeneous constraints in terms of shares.

2 Non-Envelope Theorem

2.1 Optimization Problem

We consider an optimization problem with a finite number L > 1 of choice variables, given by
(x1, . . . , xℓ, . . . , xL). The objective function is denoted by f : RL → R, where V denotes the value
of the objective, as in

V = f (x1, . . . , xℓ, . . . , xL; θ) . (1)

This problem is subject to an equality constraint of the form

g (x1, . . . , xℓ, . . . , xL; θ) = b (θ) , (2)

where g : RL → R, b : R → R\ {0}, and where θ ∈ R denotes a perturbation parameter.3 We
assume that ∂g

∂θ ⋛ 0 and db
dθ ⋛ 0, as well as ∂f

∂xℓ
⋛ 0 and ∂g

∂xℓ
̸= 0, ∀ℓ, and that all functions are

continuously differentiable. We assume that the problem is well-behaved, featuring a unique interior
solution, although it is straightforward to allow for non-negativity constraints. A perturbation of

3Our analysis applies unchanged to scenarios with binding inequality constraints. Note that we could have set
b (θ) = c, with c ̸= 0, without loss of generality. Since constraints in many applications take the form g (·) = b (θ), we
have decided to keep the perturbation parameter θ on both sides of the constraint.
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this problem is defined as a change in θ, dθ, and changes in the choice variables, dx1
dθ through dxL

dθ ,
that satisfy the constraint in (2).

2.2 Envelope Theorem

Standard arguments imply the following optimality conditions:

∂f
∂x1
∂g

∂x1

= . . . =
∂f
∂xℓ

∂g
∂xℓ

= . . . =
∂f

∂xL

∂g
∂xL

. (3)

Moreover at an optimum, the envelope theorem ensures that the change in the value of the objective
induced by a perturbation dθ is given by

dV

dθ
= ∂f

∂θ
+

∂f
∂xℓ

∂g
∂xℓ

(
db

dθ
− ∂g

∂θ

)
, ∀ℓ, (4)

where optimality in (3) ensures that dV
dθ can be read off

∂f
∂xℓ
∂g

∂xℓ

for any choice variable.

The envelope theorem is useful because it establishes that the indirect effect of the perturbation
— attributed to the adjustment of choice variables dx1

dθ through dxL
dθ — is precisely zero. That is,

it concludes that none of the change in the value of the objective dV
dθ is attributed to changes in

the choice variables, even when dx1
dθ through dxL

dθ are non-zero. Therefore, the envelope theorem
unambiguously characterizes the direct effect of a perturbation on the value of the objective, given
by (4).

2.3 Direct and Indirect Effects Away from an Optimum

But what can be said away from an optimum? Is it possible to unambiguously characterize the
contribution to the change in the value of the objective not attributed to changes in the choice
variables, that is, the direct effect of a perturbation, perhaps with some qualifications?

In general, the change in the value of the objective induced by a perturbation dθ for the
optimization problem defined in (1)-(2) must satisfy

dV

dθ
= ∂f

∂x1

dx1
dθ

+ . . . + ∂f

∂xL

dxL

dθ
+ ∂f

∂θ
, (5)

as well as
∂g

∂x1

dx1
dθ

+ . . . + ∂g

∂xL

dxL

dθ
+ ∂g

∂θ
= db

dθ
. (6)

It should be evident that by solving for any dxℓ
dθ in (6) and substituting in (5), it is possible to find

L different and equally valid characterizations of dV
dθ . For instance, if we solve for and substitute
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in dx1
dθ , we can express dV

dθ as

dV

dθ
= ∂f

∂θ
+

∂f
∂x1
∂g

∂x1

(
db

dθ
− ∂g

∂θ

)
︸ ︷︷ ︸

direct effect

+

 ∂f
∂x2
∂g

∂x2

−
∂f
∂x1
∂g

∂x1

 ∂g

∂x2

dx2
dθ

+ . . . +

 ∂f
∂xL

∂g
∂xL

−
∂f
∂x1
∂g

∂x1

 ∂g

∂xL

dxL

dθ︸ ︷︷ ︸
indirect effect

. (7)

However, there are many other valid formulations of dV
dθ , each associated with different direct and

indirect effects of the perturbation.4 In fact, any linear combination of the L possible expressions
for dV

dθ after substituting each of x1 through xL is equally valid.
At this point, it may seem that it is not possible to make further progress. However, note that

whenever the perturbation does not impact the constraint, that is, when db
dθ − ∂g

∂θ = 0 (typically,
db
dθ = ∂g

∂θ = 0), the direct effect of any perturbation is unambiguously given by ∂f
∂θ . Intuitively, if

a perturbation does not directly impact the constraint, it is possible to unambiguously determine
what is the change in the value of the objective that would have ensued if choice variables did not
change, that is, assuming that dx1

dθ = . . . = dxL
dθ = 0. Hence, this logic implies that there exists a

natural counterpart of the envelope theorem away from an optimum for parameter perturbations
that exclusively impact the objective but not the constraints, that is, when ∂f

∂θ ̸= 0 but db
dθ − ∂g

∂θ = 0.
Therefore, if we can formulate an optimization so that db

dθ − ∂g
∂θ = 0, there will exist an unambiguous

characterization of the direct effect of a parameter perturbation.

2.4 Non-Envelope Theorem

Whenever the constraint function g (·) is linearly homogeneous in the choice variables, i.e.,
homogeneous of degree 1, the optimization problem can be reformulated in terms of shares. This
change of variables is useful because the constraint of the reformulated problem does not depend on
the perturbation parameter θ. This logic allows us to unambiguously define the direct and indirect
effects of a perturbation — after reformulating the optimization problem in terms of shares — in
Theorem 1, which presents the main result of this paper.

Theorem 1. If the constraint function, g (·), is linearly homogeneous in the choice variables, it is
possible to reformulate the optimization problem defined by (1)-(2) in terms of shares ξℓ, given by

ξℓ =
∂g
∂xℓ

b (θ)xℓ, (8)

4If we instead solve for and substitute in dxL
dθ

, we can express dV
dθ

as

dV

dθ
= ∂f

∂θ
+

∂f
∂xL

∂g
∂xL

(
db

dθ
− ∂g

∂θ

)
︸ ︷︷ ︸

direct effect

+

(
∂f

∂x1
∂g

∂x1

−
∂f

∂xL

∂g
∂xL

)
∂g

∂x1

dx1

dθ
+ . . . +

(
∂f

∂xL−1
∂g

∂xL−1

−
∂f

∂xL

∂g
∂xL

)
∂g

∂xL−1

dxL−1

dθ︸ ︷︷ ︸
indirect effect

.
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ensuring that the constraint of the reformulated problem can be written as

∑
ℓ

ξℓ = 1. (9)

The change in the value of the objective induced by a parameter perturbation can thus be decomposed
into direct and indirect effects as follows:

dV

dθ
= dV non-�

dθ
+ dV ξ

dθ
,

where

dV non-�

dθ
= ∂f

∂θ
+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

∑
m

Ψℓm

ξm
db (θ)

dθ
− xm

∂
(

∂g
∂xm

)
∂θ

 (direct effect) (10)

dV ξ

dθ
=
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

b (θ)
∑
m

Ψℓm
dξm

dθ
, (indirect effect) (11)

and where the scalars Ψℓm, defined in (38), are exclusively a function of xℓ
∂g

∂xm

∂
(

∂g
∂xm

)
∂xℓ

, ∀ℓ, m.

Theorem 1 exploits Euler’s homogeneous function theorem to express the constraint in terms of
shares, defined in (8). The reformulated constraint in terms of shares does not depend directly on θ.
Hence, given the logic outlined above, there exists a unique way of attributing changes in the value
of the objective to i) changes in choice variables expressed in shares, defining the indirect effect in
(11); and ii) its complement, the direct effect in (10). Intuitively, the direct/non-envelope effect
corresponds to the change in the value of the objective induced by a parameter perturbation that is
not attributed to changes in the shares ξℓ. Through the lens of Theorem 1, the direct/non-envelope
effect can be interpreted as the precise combination of the direct effects in the original problem
identified above when substituting a single dxℓ — say in equation (7) — that ensures that shares
remain fixed.

When the constraint is not only linearly homogeneous but linear, that is, it can be written as

∑
gℓ (θ) xℓ = b (θ) ,

where gℓ (θ) does not depend on any choice variable, dV non-�

dθ takes the simpler form:

dV non-�

dθ
= ∂f

∂θ
+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

(
ξℓ

db (θ)
dθ

− xℓ
dgℓ (θ)

dθ

)
. (12)

Equation (12) illustrates how the direct effect of tightening or loosening the constraint via db(θ)
dθ

can be interpreted as a share-weighted average of the direct effects in the original problem when
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substituting each choice variable at a time, as in (7). Similarly, the direct effect of varying gℓ (θ)
via dgℓ(θ)

dθ can be interpreted as a particular combination of the aforementioned direct effects that
ensures that shares remain fixed. The corrections introduced by Ψℓm in (11) simply account for
the fact that in the general linearly homogeneous case ∂g

∂xℓ
is in turn a function of x1 through xL.

Instead of trying to provide intuition for the general case, we illustrate the direct and indirect
effects in four applications in Section 3.

2.5 Justifying Shares

Since the characterization of direct and indirect effects of a perturbation in Theorem 1 is only
unambiguous once the problem is reformulated in terms of shares, it is worth justifying the rationale
behind the use of shares.

First, recall that the direct effect of a perturbation can be interpreted as the change in the
value of the objective as if choice variables remained fixed. Hence, it is valuable to formulate
the optimization problem in terms of choice variables that are easily interpretable. And the
problem formulated in shares — as we highlight in each of our applications in Section 3 — is
easily interpretable, perhaps even more so than when formulated in levels.

Second, and more importantly, notions that rely on shares remaining fixed automatically imply
that particular ratios of levels of choice variables also remain fixed. For illustration, let’s consider
the simple problem:

f (x1, x2) s.t. x1 + x2 = θ.

In this case, shares are defined by ξ1 = x1
θ and ξ2 = x2

θ , which yields a reformulated constraint
ξ1 + ξ2 = 1. But one may be tempted to reformulate this problem by defining i) x̃1 = x1 − θ and
x̃2 = x2 or ii) x̃1 = x1 − θ

2 and x̃2 = x2 − θ
2 , which would yield a constraint of the form x̃1 + x̃2 = 0

that does not depend on θ after the change of variables. Reformulation i) can be disregarded by
arguing that is not invariant to the labeling of variables: it would yield different results if we relabel
variables 1 and 2. But reformulation ii) is not subject to that concern, since it treats all choice
variables symmetrically and it is invariant to relabeling. However, note that in this case

x̃1
x̃2

=
x1 − θ

2
x2 − θ

2
,

so if x̃1
x̃2

were to remain fixed in response to a change in θ, x1, x2, and their ratio x1
x2

would have to
change unless x1 = x2.

In contrast, the reformulation of the problem in terms of shares implies that

ξ1
ξ2

= x1
x2

,

so if ξ1
ξ2

were to remain fixed in response to a change in θ, the ratio x1
x2

would also remain fixed.
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Consequently, the direct effect characterized in Theorem 1 for the problem formulated in shares
can be unambiguously attributed to the change in the value of the objective as if ratios of choice
variables (in levels) remained fixed. Since the actual levels of the choice variables need to change
in response to a change in θ, as explained in Section 2.3, the reformulation in shares yields a notion
of the direct effect of a perturbation that keeps the ratios of choice variables fixed instead, which
seems like the next natural property one would like a direct effect to satisfy.

In general, for any two variables indexed by ℓ and ℓ′, the reformulation of the problem in terms
of shares implies that

ξℓ

ξℓ′
=

xℓ
∂g
∂xℓ

xℓ′
∂g

∂xℓ′

,

so if ξℓ
ξℓ′

were to remain fixed in response to a change in θ, the ratio
xℓ

∂g
∂xℓ

xℓ′
∂g

∂xℓ′
would also remain

fixed. Analogously, the direct effect characterized in Theorem 1 for the problem formulated in
shares can be unambiguously attributed to the change in the value of the objective as if ratios of

the contribution of each variable to the budget constraint,
xℓ

∂g
∂xℓ

xℓ′
∂g

∂xℓ′
, remained fixed, for all ℓ and ℓ′.5

It is evident that the formulation in shares is the only one that satisfies this property.

3 Applications

We now apply the non-envelope result to four canonical optimization problems in economics.
While the nature of the objectives and constraints in each application is different, it is possible
to systematically use Theorem 1 to define the direct impact on the value of the objective for any
perturbation. The applications highlight that the economic nature of the shares needed to construct
the non-envelope result substantially differs across applications (expenditure shares, input shares,
consumption shares, and factor use shares), but all follow from the linear homogeneity of the
relevant constraints.

Instead of trying to preserve the notation for objective and constraint functions used in Section
2 of this paper, we adopt notation for each application that is closer to how each problem is typically
introduced in textbooks, for instance, Mas-Colell, Whinston and Green (1995). We hope that this
choice facilitates the exposition.

5In the planning Applications 3 and 4, ∂g
∂xℓ

= 1, so constant shares imply that ratios of choice variables remain
constant. In Application 1, constant shares imply that ratios of expenditures, e.g. p1x1

p2x2
, remain constant, while in

Application 2, constant shares imply that ratios of contributions to output e.g.,
∂g

∂x1
x1

∂g
∂x2

x2
, remain constant.
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3.1 Consumer Demand Problem

In our first application, a consumer with initial wealth w chooses a bundle of L goods, c1 through
cL, to maximize utility

V = u (c1, . . . , cℓ, . . . , cL) , (13)

subject to a budget constraint that is linear in the choice variables

p1c1 + . . . + pℓcℓ + . . . + pLcL = w, (14)

where prices p1 through pL are taken as given.
Following Theorem 1, it is possible to define expenditure shares for each good as

ξℓ = pℓcℓ

w
.

This allows us to reformulate the budget constraint as

∑
ℓ

ξℓ = 1. (15)

In this case, the objective function can be written in terms of shares as

u

(
ξ1w

p1
, . . . , ,

ξℓw

pℓ
. . . ,

ξLw

pL

)
. (16)

Maximizing (13) subject to (14) is thus equivalent to maximizing (16) subject to (15). In the first
formulation, the agent chooses the amount of each good, while in the second one the agent chooses
the expenditure shares of each good directly. As explained in Section 2, the key difference between
both formulations for our purposes is that in the latter the parameters of the optimization problem
are in the objective, rather than the constraint.

Non-Envelope Result. We can directly apply Theorem 1 to express the welfare change of the
consumer associated with a general perturbation in which w and pℓ change as

dV =
∑

ℓ

∂u
∂xℓ

pℓ
(ξℓdw − xℓdpℓ)︸ ︷︷ ︸

=dV non-� (direct effect)

+
∑

ℓ

∂u
∂xℓ

pℓ
wdξℓ.︸ ︷︷ ︸

=dV ξ (indirect effect)

(17)

The direct/non-envelope term characterizes the contribution of changes in wealth, dw, and prices,
dpℓ, to the change in the consumer’s utility that is not attributed to changes in expenditure shares,
dξℓ. For changes in wealth, the direct/non-envelope term captures how much the consumer values a
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unit of wealth when spent according to the expenditure shares ξℓ.6 Intuitively, consider a scenario
in which a consumer receives an extra dollar of wealth. At an optimum, the value of spending
the dollar on any good defines the marginal value of the transfer since the consumer is indifferent
spending that dollar on any good — that is precisely the condition for optimization, which also
yields the envelope theorem. But what if the agent is not optimizing, perhaps because he/she follows
a rule-of-thumb or displays other behavioral biases (Chetty, 2015; Bernheim and Taubinsky, 2018)?

Even in those cases, Theorem 1 provides a well-defined notion of the marginal value of the dollar
in which the agent spends it respecting expenditure shares. This notion is useful because it ensures
that the consumer’s behavior, when formulated in terms of expenditure shares, is unchanged, even
though the level of consumption and the total expenditure of each good must change with the
wealth transfer.

For changes in prices (say of good ℓ), the direct/non-envelope term captures how much the
consumer has to change good ℓ’s consumption so that the existing expenditure shares remain
constant. Once again, the non-envelope result ensures that the consumer’s behavior, when
formulated in terms of consumption shares, is unchanged in response to changes in prices, even
though the level of consumption changes.

3.2 Cost Minimization Problem

In our second application, a firm that faces (and takes as given) input prices w1 through wL chooses
a combination of inputs x1 through xL to minimize costs

C = w1x1 + . . . + wLxL, (18)

subject to a linearly homogeneous production function

g (x1, . . . , xL) = q. (19)

Following Theorem 1, it is possible to define input shares for each input

ξℓ =
∂g
∂xℓ

xℓ

q
. (20)

This allows us to reformulate the production function as

∑
ℓ

ξℓ = 1. (21)

6While dV in (17) is expressed in utils, it can be trivially translated into money-metric form by dividing by the
marginal utility of consuming any good or bundle.
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With the new formulation in terms of shares, the firm chooses the input share of each input that
contributes to total output instead of choosing the quantity of each input.

Non-Envelope Result. We can directly apply Theorem 1 to express the change in total costs
for a general perturbation in which wℓ and q change as

dC =
∑

ℓ

xℓdwℓ +
∑

ℓ

wℓ
∂g
∂xℓ

∑
m

Ψℓmξmdq︸ ︷︷ ︸
=dCnon-� (direct effect)

+ q
∑

ℓ

wℓ
∂g
∂xℓ

∑
m

Ψℓmdξm︸ ︷︷ ︸
=dCξ (indirect effect)

, (22)

where Ψℓm is defined as in (38). Note that the unit of dC in this expression is the unit in which
input prices w1 through wL are defined (dollars). The direct/non-envelope term characterizes the
contribution of changes in input prices, dwℓ, and output, dq, to the change in the firm’s total costs
that is not attributed to changes in input shares, dξℓ. What is the economic interpretation of
equation (22)? Consider a scenario in which a firm needs to provide an additional unit of output.
At an optimum, the firm is indifferent to increasing output by increasing any input of production.
But what if the firm is not optimizing, perhaps because the firm’s managers are boundedly rational
(Heidhues and Kőszegi, 2018)?

Even when firms do not make choices that lead to minimizing costs, Theorem 1 provides a
well-defined notion of the marginal cost of increasing production, or the marginal change in total
costs induced by a change in input prices. Similarly to the consumer demand case, these notions
are defined to ensure that the contribution of each input to total output, as defined by input shares
in (20), remains unchanged.

3.3 Planning Problem in an Exchange Economy

In our third application, we consider a Pareto problem for a planner in an economy with I

individuals, indexed by i = {1, . . . , I}, who consume L different goods, indexed by j = {1, . . . , L}.
When I = L = 2, this application is an Edgeworth Box economy (Mas-Colell, Whinston and Green,
1995). Formally, we assume that the planner maximizes a utilitarian objective with Pareto weights
αi, so the planner chooses individual i’s consumption of good ℓ, ciℓ, to maximize the objective

W =
∑

i

αiVi where Vi = ui (ci1, . . . , ciL) , (23)

subject to resource constraints for each good ℓ of the form

∑
i

ciℓ = yℓ, ∀ℓ, (24)

where the parameters yℓ denote the endowment of each good ℓ.
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Following Theorem 1, it is possible to reformulate this problem as maximizing

W =
∑

i

αiui (ξi1y1, . . . , ξiLyL) , (25)

where individual i’s consumption share of good ℓ is given by

ξiℓ = ciℓ

yℓ
.

This in turn allows us to reformulate the resource constraint for each good ℓ as

∑
i

ξiℓ = 1, ∀ℓ. (26)

Minimizing (23) subject to (24) is thus equivalent to minimizing (25) subject to (26). In the first
formulation, the planner chooses the quantity of each good allocated to each individual, while in the
second one the planner instead chooses the share of aggregate consumption of each good allocated
to each individual.

Non-Envelope Result We can directly apply Theorem 1 to express the welfare change induced
by a general perturbation in which any yℓ changes as

dW =
∑

i

αi

∑
ℓ

∂ui

∂ciℓ
ξiℓdyℓ︸ ︷︷ ︸

=dW non-� (direct effect)

+
∑

i

αi

∑
ℓ

∂ui

∂ciℓ
dξiℓyℓ︸ ︷︷ ︸

=dW ξ (indirect effect)

. (27)

In this case, the direct/non-envelope term characterizes the contribution of endowment changes to
the change in social welfare that is not attributed to changes in consumption shares. Since a social
welfare function, such as the one in (23) conflates both efficiency and redistribution considerations,
it is useful to separate both, as explained in Dávila and Schaab (2023b). If we choose a common
unit to aggregate individual welfare gains and losses (welfare numeraire or money-metric), it is
straightforward to write the efficiency gains (defined as aggregate willingness to pay in the common
unit) implied by (27) as

E ≡ Efficiency Gains =
∑

ℓ

(∑
i

ξiℓMRSiℓ

)
dyℓ︸ ︷︷ ︸

=Enon-� (direct effect)

+
∑

ℓ

CovΣ
i [MRSiℓ, dξiℓ] yℓ︸ ︷︷ ︸

=Eξ (indirect effect)

,

where MRSiℓ =
∂ui
∂ciℓ
λi

denotes the marginal valuation that individual i attaches to a unit of good ℓ,
expressed in the common unit, and where CovΣ

i [·, ·] = I ·Covi [·, ·] is a cross-sectional covariance-sum

13



across individuals.7

Hence, Theorem 1 provides a well-defined notion of the efficiency gains induced by a marginal
change in endowments — even at inefficient allocations, in which marginal rates of substitution
between goods are not equalized across individuals. It shows that such gains are due to i) a direct
effect, which captures the aggregate gain from allocating endowment changes to different individuals
in proportion to their consumption shares ξiℓ, and ii) an indirect effect, which captures the
reallocation of consumption shares to individuals with different valuations for the goods (MRSiℓ).

3.4 Planning Problem in a Production Economy

In our final application, we consider a planning problem in an economy with a single individual
who consumes L different goods, indexed by j = {1, . . . , L}, which are in turn produced using F

factors, indexed by f = {1, . . . , F}. Formally, we assume that the planner chooses the allocation
of factors to maximize the utility of the single individual

W = u (c1, . . . , cℓ, . . . , cL) , (28)

where production of each good is potentially a function of the F factors, as in

cℓ = zℓfℓ (nℓ1, . . . , nℓf , . . . , nℓF ) , ∀ℓ, (29)

and where the (predetermined) supply of each factor, nf , must be allocated across the different
uses according to the resource constraints

∑
ℓ

nℓf = nf , ∀f. (30)

Following Theorem 1, it is possible to reformulate this problem as maximizing (28), where

cℓ = zℓfℓ (ξℓ1n1, . . . , ξℓf nf , . . . , ξℓF nF ) , ∀ℓ, (31)

where the share of factor f used to produce good ℓ is given by ξℓf = nℓf

nf
, which allows us to

reformulate the resource constraints for each factor f as

∑
ℓ

ξℓf = 1, ∀f. (32)

Maximizing (28) subject to (29) and (30) is equivalent to doing so subject to (31) and (32). In
the first formulation, the planner chooses the quantity of each factor allocated to producing each
good, while in the second one the planner instead chooses the share of each factor allocated to its

7The denominator λi is an individual normalizing factor to express welfare gains in a given common unit.
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different uses.

Non-Envelope Result We can directly apply Theorem 1 to express the welfare change induced
by a general perturbation in which any zℓ or nℓ change as

dW =
∑

ℓ

∂u

∂cℓ

dzℓfℓ + zℓ

∑
f

∂fℓ

∂nℓf
ξℓf dnf


︸ ︷︷ ︸

=dW non-� (direct effect)

+
∑

ℓ

∂u

∂cℓ
zℓ

∑
f

∂fℓ

∂nℓf
dξℓf nf︸ ︷︷ ︸

=dW ξ (indirect effect)

. (33)

In this case, the direct/non-envelope term characterizes the contribution of changes in technology
or factor endowments not attributed to changes in factor use shares. For changes in technology, the
direct/non-envelope term captures the welfare gain induced by having more output, holding factor
use shares ξℓf constant. For changes in factor endowments, the direct/non-envelope term captures
the welfare gain induced by using factors in proportion to their existing uses, again holding factor
use shares ξℓf constant. Hence, Theorem 1 provides a well-defined notion of the direct welfare effect
of a change in technology or factor endowments — even at inefficient allocations, in which factors
of production are misallocated across uses.

Note that the indirect effect in this case can be written as

∑
f

CovΣ
ℓ

[
∂u

∂cℓ
zℓ

∂fℓ

∂nℓf
, dξℓf

]
nf , (34)

where CovΣ
ℓ [·, ·] = L ·Covℓ [·, ·] is a cross-sectional covariance-sum across produced goods. Equation

(34) shows that the indirect effect captures the reallocation of factors towards uses that increase
marginal utility adjusted marginal products ( ∂u

∂cℓ
zℓ

∂fℓ
∂nℓf

). This second term is only non-zero for
inefficient allocations. The type of comparative static exercises in equation (34) are central to
the work on factor reallocation and misallocation, as in Hsieh and Klenow (2009), Acemoglu and
Restrepo (2018), and Baqaee and Farhi (2020), among many others.

4 Conclusion

This paper has shown that it is possible to define an unambiguous notion of the direct effect
of a parameter perturbation on the value of an optimization problem’s objective away from an
optimum for problems with linearly homogeneous constraints. This “non-envelope” notion relies on
reformulating the optimization problem using shares as choice variables, and has the interpretation
of holding choice variables — when formulated as shares — fixed.

As shown through four canonical applications exploring single-agent and planning problems,
it is possible to derive clear insights by systematically applying the non-envelope notion to any
optimization problem with linearly homogeneous constraints. We hope that new, meaningful

15



economic applications get developed around the non-envelope result presented in this paper.
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Appendix
A Proof of Theorem 1

Proof. The proof of this result is constructive. If the function g (·) is homogeneous of degree 1
in the choice variables, equation (2) can be expressed, appealing to Euler’s homogeneous function
theorem, as ∑

ℓ

∂g

∂xℓ
xℓ = b (θ) ,

which allows us to rewrite the constraint in (2) as in (9), where the shares ξℓ are defined in (8).
The change in the value of the objective can be expressed as

dV

dθ
=
∑

ℓ

∂f

∂xℓ

dxℓ

dθ
+ ∂f

∂θ
.

Since (8) implies that xℓ = b(θ)
∂g

∂xℓ

ξℓ, it follows that

dxℓ

dθ
= 1

∂g
∂xℓ

ξℓ
db (θ)

dθ
− xℓ

d
(

∂g
∂xℓ

)
dθ

+ b (θ) dξℓ

dθ

 , (35)

where
d
(

∂g
∂xℓ

)
dθ

=
∂
(

∂g
∂xℓ

)
∂θ

+
∑
m

∂
(

∂g
∂xℓ

)
∂xm

dxm

dθ
= ∂2g

∂xℓ∂θ
+
∑
m

∂2g

∂xℓxm

dxm

dθ
. (36)

Note that when xℓ = ξℓ = 0, it must be that dxℓ
dθ = b(θ)

∂g
∂xℓ

dξℓ
dθ . Hence, combining (35) and (36), we

find that

dxℓ

dθ

∂g

∂xℓ
= ξℓ

db (θ)
dθ

− xℓ

∂
(

∂g
∂xℓ

)
∂θ

− xℓ

∑
m

∂
(

∂g
∂xℓ

)
∂xm

dxm

dθ
+ b (θ) dξℓ

dθ

= ξℓ
db (θ)

dθ
− xℓ

∂
(

∂g
∂xℓ

)
∂θ

−
∑
m

xℓ
∂g

∂xm

∂
(

∂g
∂xm

)
∂xℓ

dxm

dθ

∂g

∂xm
+ b (θ) dξℓ

dθ
, (37)

where we use the symmetry of second derivatives, that is,
∂

(
∂g

∂xℓ

)
∂xm

= ∂
(

∂g
∂xm

)
∂xℓ

. Hence, we can write
(37) as

X = A − BX,
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where X and A are L × 1 vectors, and B is a L × L matrix given by

X =


...

dxℓ
dθ

∂g
∂xℓ

...

 , A =


...

ξℓ
db(θ)

dθ − xℓ

∂

(
∂g

∂xℓ

)
∂θ + b (θ) dξℓ

dθ
...

 , B =


. . .

... . .
.

xℓ
∂g

∂xm

∂
(

∂g
∂xm

)
∂xℓ

. .
. ...

. . .

 .

Hence, X is given by
X = ΨA, where Ψ = (I + B)−1 , (38)

which implies that we can express dxℓ
dθ

∂g
∂xℓ

as

dxℓ

dθ

∂g

∂xℓ
=
∑
m

ΨℓmAm,

where Ψℓm is the (ℓ, m) element of Ψ and Am is the m’th element of A. Therefore, we can express
dV
dθ as

dV

dθ
= ∂f

∂θ
+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

∑
m

Ψℓm

ξm
db (θ)

dθ
− xm

∂
(

∂g
∂xm

)
∂θ

+ b (θ) dξm

dθ

 ,

or separating direct and indirect effects as

dV

dθ
= ∂f

∂θ
+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

∑
m

Ψℓm

ξm
db (θ)

dθ
− xm

∂
(

∂g
∂xm

)
∂θ


︸ ︷︷ ︸

= dV non-�
dθ

(direct effect)

+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

b (θ)
∑
m

Ψℓm
dξm

dθ︸ ︷︷ ︸
=dV ξ (indirect effect)

,

which proves our result.

Special Case: Linear Constraint. Whenever g (·) is linear, it can be written as

∑
ℓ

gℓ (θ) xℓ = b (θ) ,

where gℓ (θ) does not depend on any choice variable. In this case,

dxℓ

dθ
= 1

∂g
∂xℓ

(
ξℓ

db (θ)
dθ

− xℓ
dgℓ (θ)

dθ
+ b (θ) dξℓ

dθ

)
,
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which allows us to directly write dV
dθ as

dV

dθ
= ∂f

∂θ
+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

(
ξℓ

db (θ)
dθ

− xℓ
dgℓ (θ)

dθ

)
︸ ︷︷ ︸

= dV non-�
dθ

(direct effect)

+
∑

ℓ

∂f
∂xℓ

∂g
∂xℓ

b (θ) dξℓ

dθ︸ ︷︷ ︸
=dV ξ (indirect effect)

.

Note that, in this case, xℓ = b(θ)
gℓ(θ)ξℓ, and V can be directly expressed, after a change of variables,

as
V = f̃ (ξ1, . . . ξℓ, . . . , ξL; θ) ≡ f

(
b (θ)
g1 (θ)ξ1, . . . ,

b (θ)
gℓ (θ)ξℓ, . . . ,

b (θ)
gL (θ)ξL; θ

)
.
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