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Abstract

We develop a tractable dynamic contracting framework to study bank bail-in regimes. In

the presence of a repeated monitoring problem, the optimal bank capital structure combines

standard debt, which induces liquidation and provides strong incentives, and bail-in debt, which

restores solvency but provides weaker incentives. When there are fire sales, optimal policy

entails joint regulation: a bail-in regime reduces standard debt while leverage regulation reduces

total debt. Bail-ins replace bailouts as a recapitalization tool.



1 Introduction

In the aftermath of the 2008 financial crisis, the question of orderly bank resolution has received

significant attention on both sides of the Atlantic. In many advanced economies, governments

employed bailouts to stem financial turbulence in late 2008 and early 2009.1 Bailouts were arguably

very effective at stabilizing financial markets, but have been criticized for leading to moral hazard

and perverse redistribution.2 As a result, the US (Title II of the Dodd-Frank Act) and the EU (Bank

Recovery and Resolution Directive) have introduced “bail-ins,” which allow resolution authorities

to impose haircuts on (long-term) debt holders. The goals of bail-in regimes include ensuring

that “creditors and shareholders will bear the losses of the financial company” and that “[n]o

taxpayer funds shall be used to prevent the liquidation of any financial company under [Title II]”

(Dodd-Frank Act Sections 204, 214), and bail-in regulation was coupled with statutory provisions

against bailouts.3 Nevertheless, important concerns emerge with the introduction of bail-ins. If bank

solvency can be improved by introducing state contingencies into debt contracts, then what prevents

banks from efficiently doing so using private contracts?4 Moreover, why are bail-ins preferable

from a regulatory perspective to other liability instruments—such as (outside) equity—or to bailouts

as a recapitalization tool? Studying these issues requires a framework in which bail-in debt is part

of an optimal liability structure.

The main contribution of this paper is to provide a simple and tractable dynamic contracting

model in which long-term bail-in debt is part of an optimal liability structure. The optimal contract

of our model can be implemented with a combination of short-term standard debt and long-term

bail-in debt. We show that in the presence of fire sales from liquidation, a social planner’s optimal

1Two examples in the US are the Troubled Asset Relief Program (TARP), which authorized the government to buy
toxic bank assets, and the Temporary Liquidity Guarantee Program (TLGP), which provided guarantees of bank debt.

2The Dodd-Frank Wall Street Reform and Consumer Act (Dodd-Frank Act) lists “protect[ing] the American
taxpayer by ending bailouts” as one of its main objectives, and lists “minimiz[ing] moral hazard” (Section 204) as one
of the purposes of bail-ins.

3See Geithner (2016) and Labonte (2020) for descriptions on limitations placed, for example, on the Fed, Treasury,
and FDIC.

4For example, banks could use contingent convertible (CoCo) securities that have gained traction in Europe, which
are an internal recapitalization instrument with a trigger event (for example, the bank’s capital ratio falling below some
threshold) for either a principal write-down or a conversion into equity.
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regulatory intervention entails supplementing a maximum leverage requirement with a total loss-

absorbing capacity (TLAC) requirement that can be also satisfied with long-term bail-in debt. The

social planner’s optimal regulation replaces bailouts with bail-ins. Statutory provisions that increase

the costs of engaging in ex post bailouts improve welfare.

Our three period model centers on a repeated incentive problem in the tradition of Innes (1990).

Banks raise funds from investors ex ante to finance lending. They must exert monitoring effort at

both the initial date (0) and the middle date (1) in order to ensure the quality of their loans at the

onset of the lending relationship and in its continuation. Monitoring effort is not contractible at

either stage, so that incentive compatibility constraints define the bank’s choice of effort. Banks

write optimal liability contracts in a complete markets setting, and can choose to liquidate their

project early at date 1 and sell it to arbitrageurs. Fire sales arise when the liquidation price declines

in the number of projects arbitrageurs must purchase.

Our main result is that the privately optimal bank contract can be implemented with a combi-

nation of two debt instruments: (short-term) standard debt and (long-term) bail-in debt. Standard

debt has a face value that does not depend on the bank’s date 1 return, forcing liquidation when

bank returns are low.5 Intuitively, a bank that does not liquidate at date 1 would have to be paid a

minimum agency rent in order to be willing to exert effort in continuation. Standard debt provides

strong incentives to the bank for initial monitoring effort by threatening a liquidation in which the

bank no longer needs to be paid this minimum continuation agency rent. Thus while standard debt

provides strong incentives by ensuring the bank receives no payoff in bad states, it requires costly

liquidation that reduces investor repayment. Bail-in debt, on the other hand, avoids the resource

costs of liquidation. It provides weaker incentives, however, because it transfers all cash flows to

investors except for the minimum agency rent. It therefore is a softer incentive device that avoids

resource losses. Both instruments retain the upside for the bank, which encourages effort. Other

instruments such as outside equity transfer cash flows from the bank to investors when returns are

5Our model does not differentiate between standard short-term debt and (uninsured) deposits, and standard debt
could be interpreted as a deposit. It could also be interpreted as a repurchase agreement, where insolvency arises when
the value of collateral falls sufficiently far that it no longer covers the debt.
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high, and so discourage effort. The bank finds it optimal not to use such instruments.6

The second part of our contribution is to leverage our framework to study optimal policy.

Individual banks fail to internalize that more liquidations can reduce the liquidation price due to fire

sales. We study the problem of a social planner that can choose any feasible bank contract, subject

to the same constraints as private agents but internalizing the fire sale externality. In principle, the

social planner can incentivize banks to write any feasible contract, for example incorporating outside

equity. However, we show that the social planner finds it optimal for banks to use a combination of

(short-term) standard and (long-term) bail-in debt. The planner does not require banks to introduce

other liability instruments such as outside equity into their capital structures. Intuitively, as with

the private bank, the social planner also perceives bail-in debt to be better than outside equity for

incentive provision. We show that the planner can implement bail-in debt with a resolution authority

that imposes write downs ex post, resembling the structure of existing regimes such as Title II.

The social planner optimally intervenes in both the level and composition of debt due to the

presence of the fire sale. First, for a given total amount of debt, the social planner on the margin

prefers less use of standard debt and more of bail-in debt. This is because greater use of standard

debt increases liquidations, contributing to a lower liquidation price. Second, the social planner also

on the margin prefers less overall debt. Intuitively, issuing more external debt allows the bank to

scale up, but also pledges more of the bank’s upside to investors, reducing effort at date 0. Lower

effort increases the probability of low returns and liquidation, and therefore further exacerbates fire

sales. We show that the social planner’s optimum can be implemented using the combination of a

simple maximum leverage requirement that restricts total debt, and a TLAC requirement that can

also be satisfied with long-term bail-in debt. A strength of our framework is its ability to rationalize

both of these requirements from a single underlying externality.

The post-crisis regime has emphasized replacing bailouts with bail-ins. We leverage our

framework to study this important question. We introduce taxpayer-financed bailouts that can be

6Although we frame our model around banks, the core optimal contracting framework can also apply to non-
financial corporates. We provide an interpretation of bail-ins in our model as a Chapter 11 bankruptcy reorganization
process, with liquidations corresponding to Chapter 7.
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undertaken by the planner by paying a fixed cost. We first provide a benchmark under commitment,

and show that the social planner’s optimum is to adopt the same socially optimal contract as before,

and commit not to engage in any bailouts. That is, bail-ins replace bailouts. Intuitively, bail-ins

and bailouts can achieve the same state contingencies in bank debt contracts, so that bailouts are

at best resource transfers from taxpayers to banks. Our model thus substantiates a core principle

of post-crisis regulatory reform, namely that the costs of bank resolution should be borne by bank

investors and not by taxpayers. We contextualize this result by comparing it to optimal policy in the

context of the “pre-crisis world;” the planner did not require bail-in debt to be issued, and banks did

not privately issue bail-in debt. We show how bailouts provided a costly method of implementing

the social optimum, but that banks optimally respond by only issuing standard debt to capitalize on

bailouts. This highlights both how bail-ins can replace bailouts, and also how the introduction of

bail-in regimes has seemingly “introduced” bail-in debt into banks’ capital structures.

Even without commitment over bailouts, we show that the social planner still replaces bailouts

with bail-ins. In particular, the social planner optimally sets a sufficiently strict restriction on use

of standard and total debt that no banks are bailed out in equilibrium. Because the temptation to

engage in bailouts ex post restricts the amount of (both types of) debt the bank can issue without

triggering bailouts, increasing the fixed cost of bailouts increases welfare. This rationalizes the

statutory provisions designed to make bailouts more difficult that have accompanied the introduction

of bail-in authority.

Finally, we discuss our model in the context of too-big-to-fail institutions and demand-based

theories of standard debt. We argue that partial liquidations through a good bank/bad bank approach

can be preferable to an all-or-nothing resolution approach for large banks. We compare our model to

demand-based (safety premia) theories of debt, and discuss how a combination of the two theories

can provide a more complete view of bank capital structure.

Related Literature. We relate to a growing literature on bail-ins.7 Keister and Mitkov (2021)

7There are also related literatures on contingent debt insturments (Flannery 2002, Raviv 2004, Sundaresan and
Wang 2015, Pennacchi and Tchistyi 2019, with Flannery 2014 providing a broader overview) and optimal derivatives
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show that banks may not write down their (deposit) creditors if they anticipate government bailouts,

motivating mandatory bail-ins. Chari and Kehoe (2016) use a costly state verification model to show

that standard debt is the only renegotiation-proof contract, implying that bail-ins serve only to reduce

the level of standard debt. Pandolfi (2021) studies a related Holmstrom and Tirole (1997) incentive

problem but takes standard debt contracts as given. The paper argues that bail-in resolution can lead

to a credit market collapse by weakening incentives, thus motivating liquidations or partial bailouts.

Mendicino et al. (2018) study the optimal TLAC composition for protecting insured deposits under

private benefit taking and risk shifting, taking contracts as given. Walther and White (2020) show

that precautionary bail-ins can signal adverse information and cause a bank run, resulting in an

overly weak bail-in regime and motivating bail-in rules based on public information. Colliard

and Gromb (2018) study how bail-ins and bailouts affect the negotation process of distressed

bank restructuring. Bolton and Oehmke (2019) study the trade-offs between single- and multi-

point-of-entry resolution of global banks. Dewatripont and Tirole (2018) study how bail-ins can

complement liquidity regulation. Berger et al. (2020) provide a quantitative analysis of bailouts

versus bail-ins. Our main contribution is to develop a tractable dynamic contracting framework

based on an incentive problem, in which the privately optimal contract can be implemented with a

combination of standard and bail-in debt. We leverage this framework to study the optimal design

of bail-in regimes and the role of bailouts in the pre- and post-crisis crisis response toolkits.

A vast literature studies theories of debt.8 Our paper is closely related to the dynamic optimal

contracting literature that studies repeated unobservable effort.9 DeMarzo and Sannikov (2006) and

DeMarzo and Fishman (2007) implement optimal contracts using combinations of long-term debt,

credit lines, and equity. Credit lines provide firms with financial flexibility following bad returns,

but are costly to revolve. This costly financial flexibility serves a similar role to our bail-in debt.

protection (Biais et al. 2016, Biais et al. 2019).
8Apart from incentive problems, theories of debt include costly state verification (Townsend 1979), liquidity

provision (Diamond and Dybvig 1983), and asymmetric information (Myers and Majluf 1984, Nachman and Noe 1994).
We also connect in particular to the related literature that emphasizes the monitoring role of banks (Diamond 1984,
Holmstrom and Tirole 1997).

9Relatedly, debt contracts that become more expensive to service (higher interest rate or coupon payment) have
been emphasized to promote liquidation in settings with repeated cash flow diversion (Biais et al. 2007) and screening
(Manso et al. 2010).
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Long-term debt requires coupon payments, forcing default and liquidation once the credit line is

exhausted. The liquidation threat parallels the role of our standard debt. Our paper contributes to

this literature by incorporating its ingredients (repeated unobservable effort) and insights into a

simple framework that we use to rationalize the coexistence of standard and bail-in debt, which

are especially important in the bank regulatory context. We use our framework to study normative

policy implications for the design of bail-in regimes. A number of papers separately emphasize the

cash flow transfer (Jensen and Meckling 1976, Innes 1990, Dewatripont and Tirole 1994, Hébert

2018) and liquidation threat (Calomiris and Kahn 1991, Diamond and Rajan 2001) values of debt.10

Our paper is also related to Bolton and Scharfstein (1996), who study strategic default with cash

flow diversion. They emphasize the value of easy-to-renegotiate debt for preventing non-strategic

default and hard-to-renegotiate debt for preventing strategic default.

A large literature studies macroprudential regulation in the presence of pecuniary externalities

(Bianchi and Mendoza 2010, Bianchi and Mendoza 2018, Caballero and Krishnamurthy 2001,

Dávila and Korinek 2018, Farhi et al. 2009, Lorenzoni 2008), aggregate demand externalities

(Farhi and Werning 2016, Korinek and Simsek 2016, Schmitt-Grohé and Uribe 2016), and fiscal

externalities (Chari and Kehoe 2016, Farhi and Tirole 2012), which motivate ex ante interventions

such as leverage requirements. Our model rationalizes interventions that jointly regulate the level

and composition of debt, providing a simultaneous role for both leverage regulation and a TLAC

requirement that can be satisfied with bail-in debt.

2 Model

The three-period economy, t = 0,1,2, has a unit continuum of banks, investors, firms, and arbi-

trageurs. Banks are run by their owners. Banks invest in a firm of variable scale Y0 = A0+ I0 > 0 by

using their own funds (inside equity), A0 > 0, and by signing contracts with investors to raise I0 ≥ 0.

10In similar spirits, Philippon and Wang (2022) studies use of bailout tournaments to provide equity-like incentives
for lower risk taking while Zentefis (2021) studies disciplining effects of bailouts accompanied with managerial equity
stake diluations.
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Investors are deep-pocketed at date 0 and can finance any investment scale. Firms are penniless and

have an outside option of zero. We allocate the entire value of the bank-firm lending relationship to

the bank. Arbitrageurs buy projects (firms) that are liquidated prior to maturity.

Banks and investors are risk-neutral and do not discount the future. The economy features

idiosyncratic uncertainty, but for simplicity features no aggregate uncertainty.

2.1 Bank Projects

Banks extend financing to firms, thereby establishing a lending and monitoring relationship with

those firms. When first extending funds to firms, banks monitor their borrowers, ensuring that the

projects undertaken are of good quality. In doing so, banks develop specialized knowledge of that

firm, and are uniquely able to monitor and collect from the firm in continuation. This relationship is

the foundation of banking in our model. Because we allocate all value of the lending relationship to

the bank, we omit firms going forward and refer to the relationship as bank projects.

Our model proceeds similarly to a multi-period version of Innes (1990). At each of dates 1

and 2, the bank experiences a stochastic quality shock Rt ∈ [R,R], which adjusts the project scale

to Yt = RtYt−1. This means the final project scale is Y2 = R2R1Y0. The project pays off one unit of

the consumption good per unit of final scale if held to maturity at date 2, but yields no dividend at

date 1. The shocks Rt are independent and idiosyncratic, with densities ft(Rt |et−1) = et−1 ftH(Rt)+

(1− et−1) ftL(Rt). Both states Rt are contractible, but the distribution of Rt depends on the bank’s

non-contractible monitoring effort at the prior date, et−1. Date 0 effort is continuous, e0 ∈ [0,1],

while date 1 effort is binary, e1 ∈ {0,1}. Higher values et−1 indicate greater effort (“working”) and

lower values indicate lower effort (“shirking”). We think of e0 as an initial monitoring/screening

of borrowers and e1 as continued due diligence and collections. For expositional convenience, we

normalize E[R2|e1 = 1] = 1.

Higher effort is valuable because it improves returns, but shirking yields a private benefit to

bankers. We assume that ft satisfies the monotone likelihood ratio property (MLRP).
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Assumption 1. Defining the likelihood ratio Λt(Rt)≡ ftH(Rt)
ftL(Rt)

, then Λ′
t > 0 on its support.

All enumerated assumptions are maintained throughout the paper. MLRP is a standard assumption

in generating debt contracts, and implies that high (low) returns are a signal that the bank exerted

high (low) monitoring effort. The banker’s date 0 private benefit is B0(e0)Y0, where B0 is decreasing

and concave with B0(1) = 0. The banker’s date 1 private benefit is (1− e1)B1Y1 for 0 < B1 < 1.

Banks can liquidate their project prematurely at date 1, after observing R1 but prior to exerting

effort at date 1. If the project is liquidated, it yields γY1 units of the consumption good at date

1 and nothing at date 2. Banks take the endogenous liquidation price γ ∈ [γ,γ] ⊂ (0,1) as given.

We denote α(R1) ∈ {0,1} the liquidation choice, with α(R1) = 1 being liquidation. We will later

introduce an an assumption to ensure that liquidations are ex post inefficient in that they reduce

payoffs available to both banks and investors, which will take the form of an upper bound on γ (see

Assumption 4 below).

We make the following assumptions on bank projects.

Assumption 2. The bank projects satisfy:

(a) d
de0

[E[R1|e0]+B0(e0)]> 0 and E[R2|e1 = 0]+B1 < 1

(b) (1−B1)E[R1|e0 = 1]< 1

(c) F2H(1−B1) = 0

(d) −B′
0(1)≤ B0, where B0 is defined in Appendix A.1.

(e) |B′′
0| ≥ B′′

0 > 0, where B′′
0 is defined in Appendix A.1.

(f) E[R2|e1 = 0]< γ

Part (a) of Assumption 2 ensures that higher effort levels increase total project value (including

private benefits). Part (b) ensures finite project scale. Part (c) ensures that bail-in debt can be

implemented as long-term debt. Part (d) rules out liquidating dividends being part of the optimal

contract. Part (e) guarantees that a bank liquidation generates negative externalities by lowering the
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equilibirium liquidation price (for example, under quadratic effort costs this is a lower bound on

the magnitude of the coefficient on the quadratic term). Part (f) assumes that the expected date 2

return under low effort is lower than the lowest possible liquidation price, which means that funds

available to repay investors are lower under date 1 low effort than under liquidation. This will

ensure that the privately optimal contract induces high effort at date 1.

2.2 Bank and Investor Payoffs

In order to raise investment I0 ≥ 0 at date 0, the bank offers a contract to investors that specifies: (i)

state-contingent investor repayment x1(R1) at date 1 and x2(R1,R2) at date 2; (ii) a state-contingent

liquidation rule α(R1); (iii) state-contingent bank payoff c1(R1),c2(R1,R2).11 It is important to

highlight that the state-contingent liquidation rule α(R1) contractually specifies after which return

realizations R1 the bank is liquidated, although in the implementation of our optimal contract

liquidations will be forced by short-term standard debt that cannot be fully repaid. Without loss

of generality, we define c2 = x2 = 0 in liquidation (i.e., when α(R1) = 1). Along a history R1,R2,

investor repayment and bank consumption must satisfy the resource constraints

c1(R1)+ x1(R1) = α(R1)γR1Y0, (1)

c2(R1,R2)+ x2(R1,R2) = (1−α(R1))R1R2Y0. (2)

Contracts are subject to limited liability constraints for banks, given by

c1(R1),c2(R1,R2)≥ 0. (3)

Limited liability is not required for investors, although in general the optimal contract can be

implemented with non-negative payoffs x1(R1),x2(R1,R2)≥ 0.

The bank’s effort levels are chosen after contracts are signed (see Section 2.3), but both banks
11xt is the actual amount received by investors, and is distinct from the face value of liabilities (that is, promised

repayment). We set up the problem in terms of actual repayment, and later map it into promised liabilities.
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and investors infer the effort levels the bank will choose from the contract signed. We denote these

effort levels e∗0,e
∗
1(R1) and leave their dependency on the contract signed implicit.

Bank Payoffs The total payoff to the bank along history (R1,R2), given a contract and effort

choices e∗0,e
∗
1(R1), is

c1(R1)+ c2(R1,R2)+B0(e∗0)Y0 +(1−α(R1))(1− e∗1(R1))B1R1Y1. (4)

Investor Payoffs and Participation Constraint. We define the date 1 expected payoff to investors

as

x(R1|e∗1,α,x1,x2) =

{ x1(R1)+E
[

x2(R1,R2)

∣∣∣∣e1 = e∗1(R1)

]
, α(R1) = 0

x1(R1), α(R1) = 1
. (5)

To streamline notation, we use the notational shorthand x(R1) = x(R1|e∗1,α,x1,x2), leaving implicit

that the function x depends on (e∗1,α,x1,x2). The lifetime expected payoff to investors from

the contract is −I0 +E[x(R1)|e0 = e∗0]. The voluntary investor participation constraint states that

investors must at least break even in expectation on the contract they signed. Since I0 = Y0 −A0, it

is therefore given by

Y0 −A0 ≤ E [x(R1)|e0 = e∗0] . (6)

It is important to highlight that the participation constraint depends on investors’ expectations of the

effort levels e∗0,e
∗
1(R1) that the bank will choose (recall that x(R1) depends on e∗1(R1)).

Finally, we assume repayment monotonicity at both dates: x(R1) must be monotone in R1 (i.e.,

expected investor repayment is monotone in R1) and x2(R1,R2) must be monotone in R2 (for given

R1). Formally, these assumptions are

R1 ≥ R′
1 ⇒ x(R1)≥ x(R′

1), (7)

R2 ≥ R′
2 ⇒ x2(R1,R2)≥ x2(R1,R′

2). (8)
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Monotonicity is a common assumption in many settings of optimal contracts or security design. It

generates the flat face value of liabilities in high-return states.12

2.3 Banker Effort and Incentive Compatibility

Because monitoring effort is non-contractible, the bank sequentially chooses effort to maximize its

utility after contracts have been signed. This gives rise to incentive compatibility constraints. We

proceed by backward induction.

Date 1 Effort Choice. At date 1, after R1 is realized and assuming the bank is not liquidated, the

bank optimally chooses date 1 effort e1(R1) ∈ {0,1} to maximize its payoff. We say that high effort

is incentive compatible at date 1 if bank payoff from e1(R1) = 1 is higher than from e1(R1) = 0,

that is

E
[

c2(R1,R2)(Λ2(R2)−1)
∣∣∣∣e1 = 0

]
≥ B1R1Y0. (9)

Note that the conditioning is on e1 = 0 because we have defined the likelihood ratio as Λ2 =
f2H
f2L

.

Since Λ2 is increasing (MLRP), higher payoffs c2(R1,R2) when R2 is high increase incentives for

high effort, whereas higher payoffs when R2 is low reduce incentives for effort.

The bank’s optimal effort choice at date 1 is e∗1(R1) = 1 if equation (9) is satisfied, and is

e∗1(R1) = 0 if equation (9) is violated.

12For example, one justification offered is that banks would be incentivized to pad their returns, for example by
secretly borrowing from a third party (Nachman and Noe 1990, Nachman and Noe 1994). Absent monotonicity, the
optimal contract would have a live-or-die feature at the top. Note that monotonicity does not preclude a bank from
issuing an individual instrument whose payoff profile is non-monotone, but rather states that the overall structure
summed across instruments must be monotone.
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Date 0 Effort Choice. Define the bank’s date 1 expected total payoff (including the date 1 private

benefit) as

c(R1|e∗1,α,c1,c2,Y0)=

{ c1(R1)+E
[

c2(R1,R2)+(1− e∗1(R1))B1R1Y0

∣∣∣∣e1 = e∗1(R1)

]
, α(R1) = 0

c1(R1), α(R1) = 1
.

(10)

We adopt the notational shorthand c(R1) = c(R1|e∗1,α,c1,c2,Y0) for conveninence. Note that c does

not depend on e∗0. At date 0, the bank’s optimal date 0 effort choice solves

max
e∈[0,1]

E
[

c(R1)

∣∣∣∣e0 = e
]
+B0(e)Y0. (11)

Therefore, date 0 optimal effort e∗0 is given by the equation13

−B′
0(e

∗
0)Y0 = E0

[
c(R1)(Λ1(R1)−1)

∣∣∣∣e0 = 0
]
. (12)

From MLRP and since −B0 is increasing and convex, optimal bank effort e∗0 is higher when the

bank receives a higher expected payoff c(R1) following high returns R1, and lower when expected

payoff is high following low returns.

2.4 Bank Optimal Contracting

The bank takes the liquidation price γ as given and signs a contract with investors, which we enumer-

ate in full by C = {α(R1),x1(R1),x2(R1,R2),c1(R1),c2(R1,R2),e∗0,e
∗
1(R1), I0,Y0}. The contract

must be feasible, defined below.

Definition 1 (Feasible Contracts). A bank contract C is feasible, given a liquidation price γ , if: (i)

bank limited liability is satisfied (equation 3); (ii) the resource constraints are satisfied (equations 1

and 2); (iii) the investor participation constraint is satisfied (equation 6); (iv) repayment monotonicity

13Even at the corner solution of e∗0 = 1, the equation below holds with equality. Intuitively, a bank that faced a
nonbinding incentive constraint at e∗0 = 1 would pledge more repayment to external investors to increase project scale.
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is satisfied (equations 7 and 8); (v) effort choices e∗0 and e∗1(R1) are incentive compatible (equations

9 and 12); (vi) project scale is Y0 = I0 +A0.

The bank chooses a feasible contract C to maximize its own expected utility,

E
[

c(R1)

∣∣∣∣e0 = e∗0

]
+B0(e∗0)Y0. (13)

It is helpful to note that given Assumption 2(f), the privately optimal contract in our model always

induces e∗1(R1) = 1 when the bank is not liquidated.

Liquidations and Ex Post Renegotiation. Our model has ruled out renegotiation at date 1 when

the contract has committed to liquidation, α(R1) = 1. Banks can implement the outcome of any

feasible renegotiation using state-contingent contracts, meaning renegotiation cannot increase ex

ante welfare. However, renegotiation creates a potential time consistency problem: liquidations

in our model will be an ex ante efficient method of providing incentives even though they are ex

post inefficient. Thus, although outside of our model, a bank could use liabilities that are difficult

to renegotiate as a means of enforcing liquidation. For example, it could issue runnable demand

deposits dispersed over many creditors (Calomiris and Kahn, 1991; Diamond and Rajan, 2001).14

2.5 Arbitrageurs

A representative arbitrageur purchases bank projects at date 1 and converts them into the consump-

tion good using a technology F (Ω)Y0, where Ω is the fraction of total bank projects purchased

relative to initial scale.15 Arbitrageur surplus at date 1 from purchasing projects is F (Ω)Y0 − γΩY0,

14This idea is also consistent with the design of the Title II process, which focuses debt write-downs on long-term
debt and not on short-term debt or deposits, due to a concern that “the threat of a restructuring may cause clients to flee
and short-term creditors to withdraw their capital” (French et al. 2010). Moreover, Title II resolution includes a “clean
holding company” requirement, which bars the top tier holding company (the target of resolution) from issuing any
short-term debt to external investors (12 CFR §252.64).

15This technology is consistent with convex adjustment costs to capital stock that scale with the proportion of capital
stock being adjusted (e.g. Bernanke et al. 1999). Assuming the technology is F(ΩY0) would yield similar insights but
add an additional size externality that motivates the planner to maintain lower project scale.
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so that their demand satisfies
∂F

∂Ω
= γ, (14)

where the assumption γ ∈ [γ,γ] is ensured by γ ≤ ∂F
∂Ω

≤ γ .

Arbitrageurs have date 0 wealth of A−A0, but cannot borrow against future income. Their

lifetime welfare is u(A−A0)+ (F (Ω)− γΩ)Y0, with u′(A) > 1 so that the borrowing constraint

binds. The intertemporal borrowing constraint gives rise to a distributive externality (Dávila

and Korinek 2018) that makes fire sales Pareto inefficient (see Appendix B.1). The inefficient

distributive externality arises because the borrowing constraint creates means arbitrageurs have a

higher marginal value of wealth at date 0 than at date 1.16

2.6 Market Clearing and Equilibrium

We study a symmetric equilibrium in which all banks offer the same contract. The market for

liquidated assets must clear at date 1, that is

Ω(α,e∗0) =
∫ R

R
α(R1)R1 f1(R1|e∗0)dR1. (15)

We use the notational shorthand Ω = Ω(α,e∗0). Using equations (14) and (15), we can write the

equilibrium liquidation price as

γ(Ω) =
∂F (Ω)

∂Ω
, Ω =

∫ R

R
α(R1)R1 f1(R1|e∗0)dR1. (16)

If ∂F
∂Ω

is constant and does not depend on Ω, then the liquidation price is constant and there is no

fire sale. By contrast if ∂γ

∂Ω
= ∂ 2F

∂Ω2 < 0, there is a fire sale: more liquidations reduce the liquidation

price. We define the liquidation price elasticity σ =−Ω

γ

∂γ

∂Ω
, which need not be constant. To ensure

the social planner also does not find it optimal to induce low effort in continuation (even accounting

for fire sale spillovers), we make the following assumption.
16This externality is similar to the case where there are multiple date 1 aggregate states, and incomplete markets

prevent arbitrageurs from equating the marginal value of wealth across date 1 states.
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Assumption 3. The liquidation price elasticity is bounded above, σ ≤ σ =
γ−E[R2|e1=0]

γ
.

In conjunction with Assumption 3, Assumption 2(f) ensures that low continuation effort

reduces payoffs available to investors relative to liquidation, which will guarantee the social planner

also finds it optimal to write contracts with high effort in continuation.

A symmetric competitive equilibrium of the model is a bank contract C , arbitrageur purchases

Ω, and a liquidation price γ such that: (i) the contract C is optimal for banks, given price γ; (ii)

investors’ participation constraint is satisfied (i.e., investors optimize); (iii) purchases Ω are optimal

for arbitrageurs, given price γ; (iv) the liquidation market clears.

3 Privately Optimal Contracts

In this section, we show that the privately optimal contract written by banks can be implemented by

a combination of two debt instruments. The first, which we call standard debt, has a fixed face value

that does not depend on R1, and liquidates the bank in low-return states. The second, which we call

bail-in debt, has a face value that can be written down based on R1, and restores bank solvency

when total debt exceeds the amount banks can pledge to investors while maintaining incentives.

3.1 Pledgeable Income and Liabilities

Our model gains considerable tractability because the date 1 binary effort problem can be reduced

to a Holmstrom and Tirole (1997) style pledgeability constraint. This allows us to represent the

date 0 contracting problem as choosing a liquidation rule α(R1) and expected payoffs c(R1),x(R1)

subject to the pledgeability constraint, with the exact distribution of payoffs defined by following

Lemma.17

Lemma 1. Suppose that for state R1, the optimal contract sets α(R1) = 0 and e∗1(R1) = 1. Then:

17In equilibrium, date 1 incentive compatibility does not always bind, in which case there can be multiple monotone
continuation contracts that achieve the same bank and investor expected payoffs and maintain incentive compatibility at
both dates. For consistency, we use a debt contract when (9) does not bind. Equation (9) does not bind when equation
(18) does not bind, that is bank consumption exceeds its minimum agency rent.
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1. An optimal repayment scheme is x1(R1) = 0 and

x2(R1,R2) =

 R2R1Y0, R2 ≤ Ru
2(R1)

Ru
2(R1)R1Y0, R2 > Ru

2(R1)
, (17)

for a threshold Ru
2(R1) ≤ Ru

2, where Ru
2 is a constant defined implicitly by the equation∫ R

Ru
2
[R2 −Ru

2]( f2H(R2)− f2L(R2))dR2 = B1.

2. Incentive compatibility at date 1 holds if Ru
2(R1)≤ Ru

2, or equivalently if

c(R1)≥ bR1Y0, (18)

where b =
∫ R

Ru
2
[R2 −Ru

2] f2H(R2)dR2 is a constant.

All proofs are contained in Appendix A. Lemma 1 represents date 1 incentive compatibility (equation

9) as a minimum minimum agency rent required as a fraction of expected final project value, R1Y0.18

That is, when the bank is not liquidated, bank expected consumption must be at least c(R1)≥ bR1Y0

while investor expected repayment must be at most x(R1)≤ (1−b)R1Y1 in order to ensure date 1

high effort is incentive compatible.

Lemma 1 also shows that when the bank is not liquidated and high effort is induced at date 1,

the monotone investor payoff profile associated with expected repayment x(R1) is, unsurprisingly,

debt. This debt has a total date 2 face value of Ru
2(R1)R1Y0, which therefore depends on R1.

Importantly, bank high date 1 effort e∗1(R1) = 1 combined with F2H(1−B1) = 0 (Assumption 2(c))

guarantees that the date 2 return satisfies R2 ≥ 1−B1 ≥ 1−b. As a result, the bank will be able to

repay the R1-contingent face value at date 2 with certainty, that is x(R1) = Ru
2(R1)R1Y0. Hence, the

debt x(R1) owed at date 2 is risk-free from a date 1 perspective. A consequence is that if Ru
2(R1)R1

is constant over a range of R1, then investor repayment both in expectation and at date 2 is constant

for sure over that range.

18Recall that E[R2|e1 = 1] = 1.
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The statement of Lemma 1 allows us to more clearly introduce the upper bound on γ that

guarantees liquidations are ex post inefficient because pledgeable income to investors 1−b is higher

than the liquidation value γ .

Assumption 4. The liquidation value is bounded above by γ ≤ 1−b.

Mapping to Promised Liabilities. We show how to represent optimal contracts in our model

in the more natural setting of promised liabilities. A promised repayment is denoted L(R1). If

L(R1) ≤ (1−b)R1Y0, then the bank can make its promised repayment since it is no greater than

its pledgeable income, x(R1) = L(R1), so that the date 1 market value of external liabilities equals

promised repayment. If instead L(R1)> (1−b)R1Y0, then promised repayment exceeds pledgeable

income, the bank is liquidated (α(R1) = 1), and actual repayment to investors is x(R1) = γR1Y0.

This last statement relies on the fact that liquidating dividends to the bank are not optimal, as we

verify in the proof of Proposition 1.

In the remainder of the main text of the paper, we represent contracts in terms of promised

liabilities L rather than in terms of a liquidation rule and promised repayment (α,x). We refer to L

as the face value of liabilities.

3.2 Privately Optimal Contract Terms

We begin by characterizing the privately optimal bank contract in terms of two thresholds in the date

1 return, Rp
ℓ and Rp

u . We use the superscript notation p to indicate the privately optimal values of

these thresholds, as distinct from generic thresholds Rℓ,Ru. We then associate these two thresholds

with the two debt instruments. These thresholds summarize the privately optimal liability structure

of the bank.

17



Proposition 1. A privately optimal bank contract has a liability structure

L(R1) =


(1−b)Rp

ℓY0, R1 ≤ Rp
ℓ

(1−b)R1Y0, Rp
ℓ ≤ R1 ≤ Rp

u

(1−b)Rp
uY0, Rp

u ≤ R1

, (19)

where 0 ≤ Rp
ℓ ≤ Rp

u ≤ R. The bank is liquidated if and only if R1 ≤ Rp
ℓ . These thresholds, when

interior and not equal,19 are given by

1−Λ1(R
p
ℓ )

(1− e∗0)+ e∗0Λ1(R
p
ℓ )

1
|B′′

0(e
∗
0)|

bλG︸ ︷︷ ︸
Incentive Provision

= b+λ (1−b− γ)︸ ︷︷ ︸
Liquidation Costs

, (20)

F1L(R
p
u)−F1H(R

p
u)

|B′′
0(e

∗
0)|

λG︸ ︷︷ ︸
Incentive Provision

= (λ −1)
(

1−F1(Rp
u |e∗0)

)
︸ ︷︷ ︸

Investor Repayment

, (21)

where G =
∫ Rp

ℓ
R γR1( f1H(R1)− f1L(R1))dR1+

∫ R
Rp
ℓ
(1−b)min{R1,R

p
u}( f1H(R1)− f1L(R1))dR1 ≥ 0

and where λ > 1 is the Lagrange multiplier on the investor participation constraint (equation 6).

Optimal date 0 effort satisfies

−B′
0(e

∗
0) =

∫ R

Rp
ℓ

max{bR1,R1 − (1−b)Rp
u}( f1H(R1)− f1L(R1))dR1. (22)

An optimal bank contract is defined by three regions, illustrated in Figure 1 (which is illustrated

for any Rℓ,Ru, not just the privately optimal levels).20 In the first region, R1 ≤ Rp
ℓ , the face value

of liabilities exceeds pledgeable income and the bank is liquidated following a low date-1 return.

19For the remainder of the paper, we assume that the thresholds are interior and not equal, except when explicitly
stated otherwise. Generally speaking, Rp

ℓ will be interior when the likelihood ratio Λ1(R) is sufficiently small, that is
when R is a sufficiently good signal of low effort. Rp

u will generally be interior when Λ1(R) is sufficiently large, that is
when R is a sufficiently good signal of high effort.

20In the proof of Proposition 1, see Appendix A.3.1 for a comment on non-uniqueness of total promised repayment
L(R1) below Rp

ℓ . Non-uniqueness arises in this region because any face value of liabilities above (1−b)R1Y0 results
in bank liquidation. We have chosen the face value of liabilities that correspond to standard debt, which seems most
natural in the context of banks and bail-ins. Moreover, uniqueness is restored if there is an ε → 0 premium for standard
debt, for example due to tax benefits of debt. The face value of liabilities is unique above Rp

ℓ .

18



In the second region, Rp
ℓ ≤ R1 ≤ Rp

u , all pledgeable income of the bank is transferred to investors,

leaving the bank with only the minimum agency rent needed to induce high effort at date 1. In the

third region, R1 ≥ Rp
u , all additional income generated by higher returns accrues to the bank and

investors receive the same amount (1−b)Rp
uY0 regardless of the date 1 return realization.

Equation (20) describes the marginal trade-off the bank faces in choosing the liquidation

threshold Rp
ℓ . On the one hand, liquidating the bank results in a resource loss to banks and investors,

valued on the margin at b+λ (1−b−γ). On the other hand, pledging to liquidate the bank provides

higher-powered monitoring incentives at date 0, reflected in the term 1−Λ1(R
p
ℓ )

(1−e∗0)+e∗0Λ1(R
p
ℓ )

1
|B′′

0(e
∗
0)|

b, by

depriving the bank of its minimum agency rent bRp
ℓY0 necessary to ensure date 1 incentive compati-

bility. Higher powered incentives increase effort at date 0 and so increase repayment to investors.

This increase in effort is valued at the marginal value of relaxing the participation constraint times

how much investor repayment is increased by higher effort, that is λG. The optimal choice of Rp
ℓ

trades off these two effects. Since effort is optimally chosen by the bank to maximize its own utility,

by Envelope Theorem the effect of the change in effort on bank utility is second order and so does

not appear directly in the equation. Observe that the liquidation threshold satisfies Λ1(R
p
ℓ )< 1, that

is at Rp
ℓ the likelihood ratio is less than 1 and is more in line with low effort having been exerted.

Equations (20) highlights two (direct) dependencies of Rp
ℓ on the liquidation value γ . First,

all else equal (including Lagrange multipliers and the effort level), an increase in γ leads to an

increase in the private cost of liquidation, which reduces the bank’s desired level Rp
ℓ of standard

debt. Second, all else equal (including Lagrange multipliers and the effort level), an increase in γ

leads to a fall in G (since f1H(R1)< f1L(R1) for R1 ≤ Rp
ℓ ). This intuitively reflects that higher effort

levels increase investor repayment by less because liquidation values are high, making the cost of

low-effort-induced liquidations low. The lower return to effort (in the form of investor repayment)

pushes for a lower liquidation threshold, all else equal (including Lagrange multipliers and the

effort level). In Appendix B.3 we consider a concrete case in which the private benefit of date 0

effort is linear, and we show that both Rp
ℓ and Rp

u are increasing in γ .

Equation (21) summarizes the marginal trade-off in choice of Rp
u . On the one hand, the binding
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investor participation constraint implies that transfering pledgeable income to investors is valuable

because it allows the bank to borrow more and increase project scale (i.e., λ −1 > 0). On the other

hand, increasing the total debt level reduces bank consumption in high-return states, where the

likelihood ratio Λ1(R1) is high and the signal of high effort is stronger. This lowers bank effort at

date 0 (equation 12), which reduces investor repayment, again valued at how much repayment is

valued times how much repayment is increased by effort, λG. The optimal choice of Rp
u equalizes

these two effects on the margin.

We next associate the privately optimal contract with two liability instruments: short-term

standard debt and long-term bail-in debt.

Corollary 1. The privately optimal contract can be implemented with a combination of short-term

standard debt with face value (1−b)Rp
ℓY0 due at date 1, which cannot be written down contingent

on the idiosyncratic state R1, and long-term bail-in debt with face value (1−b)(Rp
u −Rp

ℓ )Y0 due at

date 2, which can be written down contingent on the idiosyncratic state R1.

Corollary 1 provides an implementation of the optimal contract in this setting that is associated

with bail-ins. Short-term standard debt is due at date 1, and so must be rolled over. In the region

R1 ≤ Rp
ℓ , the face value of standard debt exceeds pledgeable income, so that debt cannot be rolled

over and liquidation is forced. In the region Rp
ℓ ≤ R1 ≤ Rp

u , the face value of bail-in debt is written

down to (1− b)(R1 −Rp
ℓ )Y0, which allows the bank to roll over its short-term debt and repay

investors while maintaining its minimum agency rent. In the region R1 ≥ Rp
u , bail-in debt is not

written down, all investors are repaid the face value of debt, and the bank exceeds its minimum

agency rent. As highlighted in Section 3.1, Assumption 2(c) guarantees that after the required

long-term debt write downs are imposed (if any), both the full face value of short-term debt and the

remaining face value of long-term debt are risk free in continuation.

For the remainder of the paper, we associate (short-term) standard and (long-term) bail-in debt

directly with the thresholds Rℓ and Ru, rather than writing out their associated (face value) liabilities.

That is, we refer to Rℓ as the level of standard debt, Ru −Rℓ as the level of bail-in debt, and Ru as
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the level of total debt.21

Bail-in Debt or (Outside) Equity? Proposition 1 and Corollary 1 highlight why bail-in debt can

be a valuable loss-absorbing instrument for banks, relative to equity. Bail-in debt combines the

incentive properties of standard debt with the loss-absorbing properties of equity. It generates a

maximal cash flow transfer below Ru and a flat investor payoff above Ru, similar to standard debt,

but does so without liquidating the bank (as standard debt does). By contrast, equity transfers the

upside of the bank to investors. Transferring more of the upside of the bank to investors worsens

incentives due to MLRP, since higher returns signal that the bank likely exerted high effort. Bail-in

debt recapitalizes the bank in the same manner as equity on the downside, but generates better

incentives on the upside. This leads banks to prefer bail-in debt to equity as a loss-absorbing

instrument even in the private optimum without any intervention by a social planner. In Section 5,

we study why banks did not issue bail-in debt prior to the advent of bail-in regimes in the context of

bailouts.

3.3 The Role of Agency Problems and Costly Liquidation

Our model features three key ingredients: an initial incentive problem (B0(0)> 0), a continuation

incentive problem (B1 > 0), and costly liquidations (γ < 1). Absent one of the three ingredients, the

optimal contract in our model can be implemented without combining standard and bail-in debt.22

Proposition 2. The privately optimal contract can be implemented with a single liability instrument

if B0(e0) = 0, B1 = 0, or γ = 1. In particular,

(a) If B0(e0) = 0, then the privately optimal contract can be implemented with bail-in debt.

21Bail-in debt can also be interpreted as a contingent convertible (CoCo) debt instrument (see Avdjiev et al. 2020
and Flannery 2014 for more background). Bail-in debt in our model is a principal write-down CoCo debt security
that applies at the point of non-viability. Other implementations of the contract in our model include, for example: (i)
standard debt and outside equity, with a managerial compensation scheme to pay the bank c(R1); (ii) partial-bail-in
debt, which can only be written down to (1−b)RℓY0.

22For case (c) with γ = 1, we naturally relax the bounding assumption B0 that had ruled out liquidating dividends as
it had assumed γ < 1.
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(b) If B1 = 0, then the privately optimal contract can be implemented with long-term debt.23

(c) If γ = 1, then the privately optimal contract can be implemented with standard debt.

When B0(e0) = 0, there is no required agency rent at date 0 (incentive compatibility is

maintained with any contract with monotone bank payoff), but there is a required agency rent at

date 1. Therefore, the bank can ensure incentive compatibility at both dates by using a debt contract

set according to Lemma 1. However, R1 still requires the contract to adjust the level of debt in

continuation to maintain date 1 incentive compatibility. As a result, a bail-in debt contract suffices.

As a result, a date 0 incentive problem is necessary in our model to generate an optimal contract

that combines standard and bail-in debt.

The second and third cases of Proposition 2 show that the date 0 incentive problem alone

is not sufficient to generate a privately optimal contract that combines standard and bail-in debt.

In the second case with B1 = 0, Lemma 1 tells us that b = 0 and so all income is pledgeable to

investors. Therefore, the bank can guarantee zero consumption, c(R1) = 0, without having to

liquidate the project prior to maturity. This case is analogous to Innes (1990), and means that the

bank finds it optimal to only use long-term debt to transfer cashflows to investors while avoiding

costly liquidation. In contrast in the third case, with γ = 1 but B1 > 0, there is a limit to pledgeable

income but no bankruptcy costs from liquidation. Banks can repay any amount x(R1)≤ R1Y0 by

liquidating their project, and the pledgeability constraint ceases to be relevant. Banks use only

standard debt.

In all cases of Proposition 2, the key property of debt is the cash flow transfer from the bank

to investors in low-return states and fixed repayment in high-return states (as in e.g., Innes 1990,

Hébert 2018). In absence of ex ante incentive problems, cash flow transfer is achieved with bail-in

debt. In the absence of continuation agency rents, cash flow transfer is achieved with long-term debt.

In the absence of bankruptcy costs, cash flow transfer is achieved with standard debt. However, if

there are ex ante incentive problems, continuation agency rents, and bankruptcy costs, then bail-in

23Note that it could also be implemented with bail-in debt.
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debt cannot enact a full cash flow transfer, while standard debt enacts a full cash flow transfer at a

resource cost. A role emerges for both forms of debt in the optimal contract.

4 Optimal Policy

In this section, we study optimal policy of a social planner that internalizes the fire sale externality

of Section 2.6. In particular, we study the optimal contract chosen by the planner, who must respect

the private incentive constraints of the bank but internalizes the fire sale externality. In principle,

the planner could implement any feasible capital structure, for example requiring banks to issue

outside equity as a loss absorbing instrument. Nevertheless, we show that the social planner finds it

optimal for banks to write contracts that combine standard and bail-in debt, that is bail-in debt is a

socially optimal loss absorbing instrument. Moreover, the planner intervenes in both the level and

composition of debt: the planner on the margin prefers not only less use of standard debt, but also

less overall debt. Our model rationalizes joint regulation of not only the total leverage of the bank,

but also the composition of bank TLAC, from the single underlying fire sale externality.

4.1 Social Optimum

The social planner’s problem is to choose a feasible contract (satisfying Definition 1) in order

to maximize bank’s utility (equation 13), internalizing that the equilibrium liquidation price γ is

determined by equation (16).24 Because the planner can choose any feasible contract, the planner

is not required to choose a contract combining standard and bail-in debt, and could in principle

employ other instruments such as outside equity. Nevertheless, we show in the following result that

the planner’s optimal contract combines standard and bail-in debt. For clarity, we use superscript

s notation to differentiate objects under the social planner’s contract from those of the private

optimum.

24For simplicity we have assigned a welfare weight of 0 to arbitrageurs, but in Appendix B.1 we show that similar
results hold with positive welfare weights.
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Proposition 3. A socially optimal bank contract has a liability structure

L(R1) =


(1−b)Rs

ℓY
s
0 , R1 ≤ Rs

ℓ

(1−b)R1Y s
0 , Rs

ℓ ≤ R1 ≤ Rs
u

(1−b)Rs
uY s

0 , Rs
u ≤ R1

, (23)

where 0 ≤ Rs
ℓ ≤ Rs

u ≤ R. The bank is liquidated if and only if R1 ≤ Rs
ℓ. These thresholds, when

interior and not equal, are given by

1−Λ1(Rs
ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

bλ
sGs = b+λ

s(1−b− γ
s)+ τ

s
ℓ (24)

F1L(Rs
u)−F1H(Rs

u)

|B′′
0(e

∗
0)|

λ
sGs = (λ s −1)(1−F1(Rs

u|e∗0))− τ
s
u (25)

where Gs =
∫ Rs

ℓ
R γsR1( f1H(R1)− f1L(R1))dR1+

∫ R
Rs
ℓ
(1−b)min{R1,Rs

u}( f1H(R1)− f1L(R1))dR1 ≥ 0,

where λ s > 1 is the Lagrange multiplier on investor participation, and where the “wedges” τs
ℓ ,τ

s
u

are given by

τ
s
ℓ =

(
1− 1−Λ1(Rs

ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

bLs
)

λ
s
σγ

s ≥ 0, (26)

τ
s
u =

F1L(Rs
u)−F1H(Rs

u)

|B′′
0(e

∗
0)|

Ls
λ

s
σγ

s ≥ 0, (27)

where Ls =
∫ Rs

ℓ
R R1( f1L(R1)− f1H(R1))dR1 ≥ 0. Optimal date 0 effort satisfies

−B′
0(e

∗
0) =

∫ R

Rs
ℓ

max{bR1,R1 − (1−b)Rs
u}( f1H(R1)− f1L(R1))dR1. (28)

Even though the social planner has the ability to write any feasible contract C , for example

using outside equity, Proposition 3 shows that the social planner finds it optimal to write a contract

of the same structural form as private banks chose. That is, the socially optimal contract can also

be implemented with a combination of standard and bail-in debt. The planner thus agrees with the

bank that the optimal capital structure should make use of these two debt instruments, and not other
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instruments such as outside equity. We have denoted Rs
ℓ and Rs

u to be the planner’s choices of the

two instruments.

However, the fire sale spillover results in an additional social cost of liquidation from the

planner’s perspective that is not internalized by banks: increases in total liquidations reduce the

liquidation price, which reduces investor repayment and tightens the investor participation constraint.

To compare the marginal incentives of the social planner relative to the bank in its capital structure

choice, it is instructive to think of the planner’s first order conditions in terms of the “wedge”

approach. Equations (24) and (25) are the counterparts of equations (20) and (21), respectively,

in the private optimum, excepting for the respective additions of the extra terms +τs
ℓ and −τs

u on

the right hand sides. That is, the terms τs
ℓ and τs

u represent the “wedges” that would need to be

inserted into the bank’s first order conditions to make them hold at the planner’s optimal contract

for the planner’s Lagrange multiplier λ s. These wedges are defined by equations (26) and (27), and

reflect a marginal difference in incentives of the planner and private agents, evaluated at the social

optimum. After adopting the marginal approach, we revisit the question of whether the planner uses

more or less of each instrument from a global perspective.

The wedge τs
ℓ appears as an additional social cost of liquidations that arises when standard

debt is increased. That is, a positive wedge reflects an incentive for the planner to reduce standard

debt on the margin, relative to private banks. Intuitively, the size of the wedge is given by the total

increase in liquidations, the term in parentheses, times the social cost of liquidations, λ sσγs. The

total increase in liquidations combines both a direct and indirect effect. The direct effect is that

more standard debt directly prompts more liquidations, which directly lowers liquidation prices.

The indirect effect is that a higher liquidation threshold increases date 0 effort, which reduces the

probability of insolvency and so reduces liquidations. Given Assumption 2(e), the direct effect

dominates, that is an increase in standard debt increases total liquidations in the economy, which

has a social cost λ sσγs. The social cost, all else equal, increases with the value of bank net worth,

λ s, and with the fire sale elasticity, σ . The planner’s positive wedge on standard debt thus indicates

that the planner on the margin prefers less use of standard debt than private banks in order to reduce
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the severity of fire sales.

The wedge τs
u on use of total debt appears in the planner’s first order condition akin to a

decrease in the revenue received from issuing more total debt to investors. That is, a positive wedge

reflects a lower marginal incentive for the planner to increase total debt. The wedge on use of total

debt is positive, τs
u ≥ 0, which arises due to an indirect incentive effect. Intuitively, as total debt

increases, the bank’s optimal effort level declines, which raises the probability of the bank’s date 1

return being below Rs
ℓ and hence a liquidation occurring. This increase in total liquidations is again

evaluated at the social cost of liquidations, λ sσγs. As a result, the planner also prefers less use of

total debt by the bank as another method of mitigating liquidations and fire sales. The planner thus

intervenes in not only the composition of debt, but also in the total level of debt.

The above discussion is based on marginal analysis conducted at the social optimum. In

Appendix B.3, we study a special case of linear private benefits, B0(e0) = b0(1−e0), and show that

the planner’s contract indeed involves less use of both instruments relative to the private optimum,

that is Rs
ℓ ≤ Rp

ℓ and Rs
u ≤ Rp

u .

Implementation with Joint Regulation. In the proof of Proposition 3, we show that the social

planner can induce the bank to choose the socially optimal debt levels by setting two requirements:

(i) banks must set total debt to be at most Ru ≤ Rs
u; (ii) banks must set standard debt to be at most

Rℓ ≤ Rs
ℓ. The first constraint on total debt (as a fraction of scale) can be interpreted as a minimum

equity capital requirement or a maximum leverage requirement. Such a requirement is a common

bank regulatory tool in both the pre- and post-financial crisis toolkit. The second constraint can

be interpreted as a portion of the total loss-absorbing capacity (TLAC) requirement that can be

satisfied by long-term bail-in debt. These two requirements are consistent with US requirements

for both minimum equity and long-term debt that can be subject to bail-ins (82 FR 8266). More

broadly, the Basel III requirements incorporate both a minimum equity component of the Tier 1

capital requirement, and additionally allow CoCos to satisfy AT1 requirements and long-term debt

to satisfy Tier 2 requirements (BCBS (2011)). A strength of our model is that the single fire sale
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externality rationalizes both of these requirements.

4.2 Ex Post (Bail-in) Resolution as Optimal Policy

Although in our model bail-in debt involves pre-specified (ex ante) contractual write-downs, in

practice bail-ins are also implemented via a resolution authority that imposes write downs ex

post. We show that the social optimum can also be implemented using an ex-post resolution

authority. Our resolution authority has discretion at date 1 to impose write downs on liability

contracts that are designated “bail-inable,” but is prohibited from imposing write downs on contracts

that are designated “non-bail-inable.” The objective of the resolution authority is, at the level of

the individual bank (i.e., taking equilibrium prices as given), to maximize total recovery value

to creditors, subject to write downs being Pareto efficient for creditors and the banker. In the

implementation that follows, it will be necessary to allow for debt seniority.

Corollary 2. The social optimum can be implemented using macroprudential policy and a resolution

authority. The social planner imposes an ex ante requirement for the bank to issue Rs
ℓ in non-bail-

inable senior debt and Rs
u−Rs

ℓ in bail-inable junior debt, where Rs
ℓ and Rs

u are given as in Proposition

3. The resolution authority implements the write downs of Proposition 3 ex post.

Corollary 2 provides an implementation of the social optimum using a resolution authority. If

R1 < Rs
ℓ, the resolution authority lacks capability to impose sufficient write downs to recapitalize

the bank, and so cannot intervene. If Rs
ℓ ≤ R1 ≤ Rs

u, the resolution authority writes down bail-inable

debt to R1 −Rs
ℓ. This maximizes creditor recovery and is Pareto efficient, since bail-inable debt

is junior. If R1 > Rs
u, the resolution authority’s objective is achieved without write downs. Thus

the same outcome as in Proposition 3 is achieved. Finally, the planner mandates the level and

composition of debt ex ante for the same reason as under the contractual implementation.25

The implementation of optimal policy in Corollary 2 is consistent with several properties in

25In our model, bank fundamentals R1 are common knowledge, so there is no informational time consistency
problem as in Walther and White (2020).
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the design of bail-in regimes in practice, for example Title II. Bail-in regimes subordinate bail-

in(able) long-term debt to standard short-term debt, that is standard debt enjoys absolute priority in

bankruptcy, liquidation, and resolution.26 Moreover, the objective of Pareto efficiency is consistent

with the No Creditor Worse Off principle of bank resolution (BRRD Article 73).

In practice, bail-in long-term debt and contingent convertible debt (CoCos) are subject to

differential regulatory treatment. In addition to a common equity Tier 1 capital requirement, Basel

III includes an AT1 capital requirement towards which certain CoCos qualify, whereas bail-in debt

serves as Tier 2 capital (BCBS (2011)). This provides a regulatory advantage to CoCos in Europe

and other jurisdictions that allow CoCos as AT1.27 In contrast, the US does not include CoCos in

Tier 1 capital and further requires that to satisfy the minimum long-term debt requirement, “eligible

external LTD [is] prohibited from including contractual triggers for conversion into or exchange for

equity” (82 FR 8266).28 Although our model does not clearly differentiate between bail-in debt and

CoCos, from a regulatory perspective it highlights the importance of distinguishing a (Tier 1) equity

capital requirement that cannot be satisfied by CoCos, from a (Tier 2) bail-in debt requirement

that could potentially be satisfied by CoCos. In particular, it highlights that both bail-in debt and

CoCos should be restricted by a maximum leverage requirement. Although outside of our model, a

regulator could require a minimum fraction of Tier 2 capital be comprised of bail-in debt or CoCos

based on which of the two instruments was preferred.

26In practice, short-term debt priority has three implementations. The first is contractual: bail-in debt is junior to
short-term debt. The second is organizational: short-term debt is issued at the operating subsidiary, whereas long-term
debt is issued at the top-tier holding company. The third is legal: national bankruptcy law confers priority to short-
term debt in the case of banks. The US induces seniority through organizational form, and we could implement the
US approach under Corollary 2 by assuming that bail-inable debt is held at a resolvable holding company, whereas
non-bail-inable is held at a non-resolvable operating subsidiary.

27Avdjiev et al. (2020) and Fiordelisi et al. (2020) provide more details on CoCos and regulatory treatment.
28In addition, debt used to satisfy TLAC requirements must be plain-vanilla, implying a fixed face value (82 FR

8266)

28



5 Bail-ins and Bailouts

One of the stated goals of bail-in regimes is to replace bailouts. A strength of our framework is

that we can leverage it to examine important policy questions such as this one. In this section, we

extend our analysis of Section 4 by allowing the planner to engage in bailouts at date 1 by paying

a fixed cost. If the planner has commitment and can jointly regulate the level and composition of

debt, we show that the planner optimally commits to no bailouts. Absent commitment, we show

that a social planner with joint regulation sets standard and bail-in debt levels so that no bailouts

occur in equilibrium. An increase in the fixed cost of bailouts improves welfare, rationalizing why

bail-in regulation has been paired with statutory provisions to make it harder to engage in bailouts.

5.1 Introducing Bailouts

We extend our setup to allow the planner to engage in bailouts. At date 1, the planner’s bailout

authority can pay a fixed cost F ≥ 0 to be able to undertake bailouts (e.g., Farhi and Tirole (2012)).

We define T (R1)≥ 0 to be a bailout given at date 1 to a bank with return R1. The smallest bailout that

recapitalizes a bank with return R1 that cannot both repay its liabilities and maintain its minimum

agency rent is T (R1) = L(R1)− (1−b)R1Y0. Bailout funds are raised from taxpayers at date 1. As

with investors, taxpayers have deep pockets and can finance any bailout. Taxpayer utility is cT
0 + cT

1 ,

where cT
0 = AT

0 +T0 and cT
1 = AT

1 −E[T (R1)|e0 = e∗0]. We interpret T0 as a “bailout fund,” i.e., a

transfer from banks to households at date 0 to compensate for ex post bailouts (so that the bank

endowment at date 0 is A0 −T0). A bailout fund is necessary to achieve a Pareto improvement if

bailouts are used in equilibrium, but is not needed if bailouts do not occur.

5.2 A Commitment Benchmark

We take as our starting point the planner’s problem in Section 4.1 and allow the planner to also

choose its bailout authority’s bailout policies with commitment. We start with the assumption of

commitment to provide conceptual benchmarks. Formally, we characterize Pareto efficient contracts
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C and bailout rules (T0,T1). That means we solve the (constained) Pareto problem, which is to

maximize the sum of bank and taxpayer welfare with a Pareto weight of 1 on banks and ωT placed

on taxpayers.29 Recall that ex-post bailouts T1 can always in principle be offset by a transfer T0 to

ensure taxpayers are no worse off, so requiring Pareto efficiency does not immediately rule out use

of bailouts. The problem is otherwise the same as in Section 4. We obtain the following result.

Proposition 4. In the model with committed bailouts, the socially optimal contract of Proposition 3,

with no bailouts (T0 = T1 = 0), is Pareto efficient.

Proposition 4 shows that a planner with commitment achieves Pareto efficiency in the model

with committed bailouts by exclusively relying on bail-ins to recapitalize banks. This means

bailouts are not used at any point on the Pareto frontier. To understand why, suppose the planner

bailed out the marginal liquidated bank R1 ↑ Rs
ℓ. There are two effects of a bailout. First, the

liquidation threshold is lowered, that is Rs
ℓ effectively falls. But under the socially optimal contract

of Proposition 3, the marginal cost of liquidations is perfectly balanced against the marginal benefit

of incentive provision, meaning a reduction in Rs
ℓ has zero net welfare effect. Second, a bailout also

transfers resources from taxpayers to banks. The marginal social benefit of the resource transfer

is the value of relaxing the participation constraint, λ s. The marginal social cost of the resource

transfer is the burden to taxpayers, ωT . To select the point on the Pareto frontier that is consistent

with the ex-ante distribution of resources between banks and taxpayers, we select the Pareto weight

ωT = λ s. This implies that the net welfare gain from ex-ante resource transfers is zero, and therefore

there is also no welfare gain from bailing out the marginal otherwise-liquidated bank.30 Therefore,

the optimal contract contract of Proposition 3, with no bailouts or date 0 transfers, maximizes the

planner’s welfare criterion, and so we have found a Pareto efficient allocation without bailouts.31

It is well known that when debt contracts are non-contingent by assumption, bailouts can be

29As in Section 4, we maintain a welfare weight of 0 on arbitrageurs.
30Other points on the Pareto frontier imply an initial redistribution of wealth via T0, but still have no bailouts.
31Dewatripont and Tirole (2018), Farhi and Tirole (2021), and Keister and Mitkov (2021) emphasize that bailouts

can be used as an insurance mechanism, independent of the value of preventing liquidations per se. In our model, this
can happen in reduced form by assuming taxpayers discount the future while investors do not.
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Pareto efficient because they insert contingencies into otherwise non-contingent contracts (Bianchi

2016, Jeanne and Korinek 2020). Our model endogenously generates not only non-contingent

standard debt, but also contingent bail-in debt. Thus the planner can achieve the same state-

contingencies with bail-in debt as it could with bailouts. As a result under full commitment, the

planner can achieve an efficient outcome by using more bail-in debt, rather than by bailing out

standard debt, provided that the planner also has the ability to jointly regulate both the level and

composition of debt.

Bailouts without Joint Regulation: Although pre-crisis regulation included leverage require-

ments to regulate the total debt level of banks, the ability to regulate its composition was only

introduced post-crisis by bail-in regimes (e.g., Title II of Dodd-Frank). Having only a leverage

requirement would inhibit the ability of the planner to achieve the socially optimal contract with

regulation. Maintaining the assumption of commitment, we show that the planner can use the

combination of leverage regulation and bailouts to implement the outcome of the socially optimal

contract in a Pareto efficient manner, while incurring only the fixed cost F of bailouts. The following

result formalizes how bailouts implement the social optimum in a Pareto efficient manner.

Proposition 5. With bailout commitment, the social planner can implement the social optimum of

Proposition 3 in a Pareto efficient manner by setting: (i) leverage regulation Ru = Rs
u; (ii) bailouts

for banks with R1 ∈ [Rs
ℓ,R

s
u]; (iii) a bailout fund T0 = E[T (R1)|e0 = e∗0(R

s
ℓ,R

s
u)]. Banks only issue

standard debt, that is Rp
ℓ = Rs

u.

In absence of a bail-in regime, the planner can engineer the socially optimal outcome by

making use of bailouts. Leverage regulation Ru = Rs
u ensures that banks have to set total debt

equal to its socially optimal level. Bailouts ensure that banks Rs
ℓ ≤ R1 ≤ Rs

u are not liquidated.

Anticipating bailouts, banks respond by setting Rp
ℓ = Rs

u, that is not issuing any bail-in debt. This

outcome mimics the payoff profile of the socially optimal contract, but in the process transfers

resources of amount E[T (R1)|e0 = e∗0] from taxpayers to the bank.32 The planner unwinds this ex

32Bailouts go to repay investors at date 1, but the bank extracts expected bailout payments from investors by holding
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post transfer by using an ex ante transfer (“bailout fund”), forcing banks to cover the expected costs

of bailouts ex ante in a lump sum payment to taxpayers. This results in Pareto efficiency, since

taxpayers receive back the amount they have to pay in bailouts (i.e., it is as-if banks are paying for

their own bailouts).

As with Proposition 4, Proposition 5 provides an idealized result in the world of bailout

commitment. It is instructive, however, because of the key contrast of this environment with that of

Proposition 4: the only change was that the planner was not able to jointly regulate the level and

composition of debt. In this sense, it is the advent of bail-in regulation that allows the planner to

regulate both the level and composition of debt that allows for bail-ins to fully replace bailouts.

Why Didn’t Banks Issue Bail-in Debt before 2008? The combination of Propositions 4 and 5

provides an explanation for why bail-in debt was “introduced” into the capital structure of banks in

the post-crisis world. Absent joint regulation of the level and composition of debt, bailouts provided

a potentially costly method of implementing the social optimum by preventing costly liquidations

of intermediate-return banks. In anticipation of bailouts, banks responded pre-crisis by only issuing

standard debt and not issuing bail-in debt. However, the introduction of bail-in regimes has allowed

interventions in both the level and composition of debt, enabling the planner to achieve efficient

outcomes without bailouts. Thus the advent of bail-in regimes has “introduced” bail-in debt into

banks’ capital structures.33

5.3 Bail-ins replace bailouts without commitment

We now study the case in which the planner cannot commit to the bailout rules adopted by its bailout

authority at date 1. Instead, in keeping with much of the literature, we assume the bailout authority

them to their participation constraint ex ante.
33Another variant of this idea comes from part (c) of Proposition 2: if banks were protected from the costs of

liquidation, for example by the anticipation of bailouts, they would not be incentivized to issue bail-in debt. Expectation
of bailouts would increase recovery values both directly by protecting creditors (debt guarantees such as TLGP) and
indirectly by stabilizing resale markets (asset purchases such as TARP). Resale market stabilization in particular can
help explain why even smaller banks, which may not have expected direct bailouts, might nevertheless not use bail-in
debt.
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chooses bailout policies at date 1 to maximize a utilitarian objective with equal weights on banks,

investors, and taxpayers, accounting for the fixed cost F of bailouts.34 Even though the bailout

authority chooses bailout policies ex post without commitment, our main result for this section

is that with joint regulation, the planner’s still achieves Pareto efficiency by eliminating bailouts.

Moreover, increasing the fixed cost F increases welfare, rationalizing statutory provisions against

bailouts. To streamline exposition, we move directly to considering contracts combining standard

and bail-in debt, (Rℓ,Ru).

At date 1, the bailout authority makes bailout decisions (taking the contracts signed and date

zero effort choice as given). The total resource loss to banks and investors from liquidations across

all banks is given by (1− γ(Ω))ΩY0. The bailout authority therefore bails out no banks if the fixed

cost F of bailouts is higher than the total losses from liquidations,

(1− γ(Ω))ΩY0 ≤ F, (29)

and otherwise bails out every bank that would otherwise be liquidated. For example, in the limiting

case of F = 0, any nontrivial level of standard debt (i.e., any Rℓ > R) would result in bailouts of

every bank with R1 ≤ Rℓ ex post. Anticipating bailouts, banks would only issue standard debt (as in

Proposition 5). This means a planner lacking joint regulation (i.e., only a leverage requirement)

would face a choice between forcing banks to minimal leverage or to engage in full bailouts of any

distressed banks.35 We focus our analysis on the case with joint regulation.

We now turn to the ex ante optimal debt levels of the social planner. Akin to Section 5.2, we

solve the (constrained) Pareto problem, that is characterizing Pareto efficient debt levels (Rℓ,Ru)

and bailout rules (T0,T1), but subject to the constraint that bailouts T1 are chosen ex post by the

bailout authority. Recall that ex-post bailouts T1 can always in principle be offset by a transfer T0

34Recall that even though investors receive no surplus ex ante under the contract, ex post they lose value from
liquidations. Results extend to allowing the bailout authority to also put the same welfare weight on arbitrageurs, but
for consistency in main text we simplify and maintain the zero weight on arbitrageurs.

35See for example Farhi and Tirole (2012) and Chari and Kehoe (2016) for models in which full bailouts can arise
due to fixed bailout costs or to purely utilitarian bailouts.
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to ensure taxpayers are no worse off, so requiring Pareto efficiency does not immediately rule out

debt levels that result in bailouts. We now show that for any F , Pareto efficient debt levels eliminate

bailouts entirely.36

Proposition 6. Absent bailout commitment:

1. For any F ≥ 0, Pareto efficient debt levels (Rs
ℓ,R

s
u) are such that no banks are bailed out in

equilibrium.

2. Welfare is increasing in the cost F of bailouts.

The first part of Proposition 6 shows that, as before, Pareto efficiency is associated with debt

levels that ensure that no bailouts occur ex post. In fact, the intuition comes from Proposition 4. As

in Proposition 4, bailouts are redundant as a recapitalization instrument when bail-ins are available.

In particular, any debt levels under which bailouts occurred ex post could be mimicked by instead

reducing the level of standard debt to zero while maintaining the same overall leverage, without

incurring the fixed cost of bailouts. Thus the planner finds it optimal to rule out bailouts through

choice of debt levels. The above logic applies for any F , even F = 0.

The second part shows that welfare increases in the fixed cost F at every point on the Pareto

frontier. This is because the “no bailouts” constraint of equation 29 limits the set of no-bailout debt

levels. Increasing the cost of bailouts F relaxes that constraint and enables the planner to choose

debt levels that result in more costly liquidations. While welfare is maximized by taking F → ∞,

that is ensuring bailouts are never tempting, the planner benefits from increasing the cost of bailouts

F even when F remains finite.

Our model helps to understand that attempts to move the post-crisis regime towards a no-bailout

world has two complementary components. The first important element is the use of regulatory

limits – leverage and TLAC requirements – to reduce the temptation to engage in bailouts ex post.

36If we were instead to assume the date 0 planner also put equal weights on banks and taxpayers, as does the bailout
authority, the planner would still choose debt levels that eliminated bailouts as in Proposition 6, but would also use date
0 transfers T0 to shift wealth to banks, since the marginal value of inside equity, which is λ s > 1, is higher than the
marginal value of wealth to taxpayers, which is 1. That is, the planner would simply move to a different point on the
Pareto frontier that still involved no bailouts.
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The second important element is to increase the cost of engaging in bailouts, which complements

the first by enabling the planner to adopt looser regulatory requirements in the sense of allowing

more costly liquidations to occur. The post-crisis introduction of bail-in regulation as a complement

to equity capital requirements (leverage limits) has been complemented by pushes to make engaging

in bailouts more difficult, which through the lens of our model makes F larger. Contrasted with

Propositions 4 and 6, our results in Proposition 5 suggest that governments pre-2008 may have had

more flexibility to engage in bailouts precisely because they lacked the bail-in instrument. In the

context of Proposition 5, targeted bailouts towards intermediate-return banks allowed them to repay

their debtholders while also maintaining their own minimum agency rent. Importantly, this implies

that bailouts in our model not only protect debt holders, but also provide some protection to the

(inside) equity stakeholders in the bank. However, in the absence of commitment, the conditional

support of Proposition 5 is not incentive compatible for the government: the bailout authority

optimally chooses to bail out all banks, or none.

Although post-crisis legislation has not made bailouts impossible (which would correspond

to F = ∞), it arguably has increased the difficulty and costs of engaging in bailouts on several

dimensions. First, the Dodd-Frank Act put in place restrictions on lender of last resort activities,

including eliminating the ability to target loans to individual distressed institutions (Labonte, 2020;

Geithner, 2016).37 Geithner (2016) notes that “[t]his was designed to make it hard if not impossible

for the Fed to undertake the types of programs it did to facilitate the acquisition of Bear Stearns by

JPMorgan Chase and to prevent AIG’s failure.” Consistent with bail-in regimes making it possible

and desirable to eliminate bailouts, Former Chairman Ben S. Bernanke notes that “[w]ith the

creation of the liquidation authority, the ability of the Fed to make loans to individual troubled firms

like Bear and AIG was no longer needed and, appropriately, was eliminated.”38 Beyond restrictions

on the Fed, post-crisis regulation has also put limits on the ability for other agencies to engage

37Labonte (2020) notes additional restrictions, including that in implementing the Dodd-Frank Act, “the [Fed’s]
final rule requires lending to be at a “penalty rate,” which it defines as a premium to the market rate prevailing in normal
circumstances.”

38Ben S. Bernanke, “Warren-Vitter and the Lender of Last Resort,” Brookings Institution, May 15, 2015.
http://www.brookings.edu/blogs/ben-bernanke/posts/2015/05/15-warren-vitter-proposal
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in the debt guarantee and capital infusion programs that were used in the crisis (Geithner 2016).

For example, Geithner (2016) highlights that it “took away the FDIC’s discretion to guarantee the

broader liabilities of banks and bank holding companies.” At the same time, Congress maintains

the ability to enact support programs with legislation. This is consistent with the idea that the

cost of engaging in bailouts may have increased through limitations on discretionary authority, but

that cost remains finite. Through the lens of our model and Proposition 6, the post-crisis leverage

and TLAC requirements play a dual role of managing fire sales and preventing bailouts, while

statutory commitments raise bailout costs and alleviate the need for even more stringent regulatory

requirements.

6 Discussion and Extensions

In this section, we connect our model to nonfincial firms and bankruptcy, to too-big-to-fail institu-

tions, and to demand-based explanations for standard debt.

6.1 Nonfinancial Firms and Bankruptcy

Although our model is framed in terms of banks, our optimal contracting framework could also be

applied to nonfinancial corporates. An interpretation of our model as corresponding to corporate

capital structure and bankruptcy can be made as follows. Chapter 7 of the US Bankruptcy Code

provides for liquidation, while Chapter 11 provides for reorganization and debt restructuring

process.39 Chapter 11 reorganization requires that creditors in impaired classes should either have

voted to accept the plan or be no worse off than in Chapter 7 liquidation (11 U.S.C. §1129).40

Impaired classes can push for liquidation under Chapter 7, or can accept concessions such as the

bail-in haircuts of our model in a reorganization plan. It is well known that different creditors
39One important concern is that Chapter 11 may be imperfectly designed for banks (French et al. 2010), leading the

US Treasury Department to adopt a proposal for a Chapter 14 bankruptcy process tailored to banks (Scott and Taylor,
2012; US Department of Treasury, 2018). Our model suggests that difficulties of resolving banks results from banks’
deliberate capital structure decisions, and our normative results in Section 4 suggest a role for the government to require
greater use of bail-in debt even under a Chapter 14 process.

40This mirrors the no-creditor-worse-off condition of bail-in regimes, see Section 4.2.
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have different incentives in the renegotiation process (e.g., Bolton and Scharfstein 1996): senior

secured creditors often favor liquidation to avoid further impairment, whereas junior unsecured

creditors often prefer reorganization to capitalize on convexity. Dispersing (secured senior) claims

over many creditors can lead to disorderly collateral seizures and hold out problems that inhibit

reorganization, whereas concentrating claims can mitigate hold out problems. We interpret standard

debt as corresponding to dispersed (short-term) senior secured claims that promote Chapter 7, and

bail-in debt as concentrated (long-term) junior unsecured claims that promote Chapter 11.41

In practice, Chapter 11 reorganization is common for distressed large nonfinancials and

conversion to Chapter 7 liquidation is relatively uncommon (Wruck 1990, Bernstein et al. 2019,

Antill 2022). In addition, nonfinancials often have lower leverage (lower Rp
u) and make less use of

harder-to-resolve contracts (lower Rp
ℓ ) such as short-maturity repurchase agreements that are exempt

from the automatic stay.42 One explanation for why nonfinancials may make themselves fairly

resolvable and have lower leverage is that they may have fairly high average liquidation discounts

(Antill, 2022).43 Consistent with these observations, in Appendix B.3, we study the special case of

linear private benefits, B0(e0) = b0(1− e0), and show that both standard debt Rp
ℓ and total debt Rp

u

are decreasing in the liquidation discount 1− γ .

6.2 Too-Big-To-Fail

Our model assumes all banks are small, but in practice bail-in regulation is often tailored to “too-

big-to-fail” banks. Failure of a single large bank could generate a large enough fire sale that the

41Our normative results in Section 4 could potentially be viewed as rationalizing intervention in the non-financial
corporate bankruptcy process if fire sale externalities are a concern, for example requiring greater issuance of easier
to resolve junior unsecured debt. See Antill and Clayton (2024) for a related analysis of optimal intervention in the
insolvency process for nonfinancials.

42For example, the Flow of Funds (B.103) suggests that the debt-to-equity of nonfinancial corporates has been in
the 20-40% range over the past decade, whereas capital requirements for systemically important financial institutions
are in the range of 20% (i.e. a debt-equity ratio well above one). See Gorton and Metrick (2012) for a discussion of
repurchase agreements.

43Antill (2022) shows in a sample excluding acquisitions that switching from reorganization to liquidation in a given
bankruptcy reduces expected creditor recovery across all debt claims by 42 cents on the dollar. Relatedly, Bernstein
et al. (2019) provides evidence that firm liquidation persistently reduces the utilization of the firm’s real estate assets.

37



planner would prefer to avoid liquidation. In our model, this would mean Rs
ℓ ≤ R.44 Such regulation

is privately costly because it reduces effort incentives, forcing lower debt and smaller project scale.

However, this cost arises because we have modeled liquidation as an all-or-nothing decision. We

now argue that partial liquidation of large banks can be desirable to mitigate externalities while

providing incentives. We connect this idea to proposals for a good bank/bad bank approach to

resolution. We then verbally discuss how our results might be affected by a large bank with an

all-or-nothing liquidation decision.

Partial Liquidations of Large Banks. We model N ≥ 1 ex ante identical large banks (in place of

small banks). A large bank is an investment family (“holding company”) consisting of 1
N managers

(“subsidiaries”), each of whom can undertake a project of the form in Section 2. Each holding

company divides inside equity, 1
N A0, equally among its subsidiaries, and then coordinates external

capital structure decisions for the family (i.e., the contract of each subsidiary).45 We treat x as

subsidiary cash flows pledged to external investors and c as cash flows pledged to the family.46

Each manager independently operates her subsidiary to maximize the payoff of her project to her

family. Incentive compatibility, monotonicity, and limited liability are specified at the subsidiary

level. For simplicity, suppose there are no fire sales. It is easy to see in this case that every large

bank chooses the same privately optimal contract as Proposition 1.47 The privately optimal contract

therefore results in a partial liquidation of each large bank, where subsidiaries with R1 ≤ Rp
ℓ are

liquidated.

In this simple extension, subsidiary-level effort choice provides a role for partial liquidations of

44This is a more extreme version of current regulations that impose surcharges in capital requirements for systemically
important financial institutions.

45For simplicity, our model abstracts away from the possibility that contracts are interconnected (that is, C is only
adapted to the individual subsidiary’s R1) – for example a threat to liquidate other subsidiaries as well if one subsidiary
performs badly. This is consistent with the idea that the manager must act to maximize payoff to her subsidiary’s equity
holders, and not equity holders of other subsidiaries.

46In our simple framework, there are two equivalent methods this could be achieved. One is that the subsidiary
directly holds external bail-in debt. The other is that the holding company holds bail-in debt in the subsidiary, and then
issues the same instrument externally. Thus a loss at the subsidiary is indirectly passed on to external investors. We
treat these two methods as equivalent in the sense that both generate the same division of final payoffs xt and ct among
outside investors and the family.

47If there were fire sales, each large bank would internalize only a fraction 1
N of the fire sale cost, generating a role

for the planner to intervene and impose the contract of Proposition 3.
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poorly performing subsidiaries, while the holding company coordinates capital structure decisions.

In addition to motivating a holding company structure that allows individual subsidiaries to fail, this

extension also provides a novel rationale for clean holding company requirements: standard debt

at the subsidiary level forces liquidation of that specific subsidiary. Partial liquidation could also

be seen as a good bank/bad bank resolution approach, under which the best performing assets or

subsidiaries (with R1 ≥ Rp
ℓ ) of the large bank are separated into the “good” bank and reorganized,

while the worst performing assets or subisidiaries (with R1 < Rp
ℓ ) are placed into the “bad” bank

and liquidated. The size of the bad bank increases in Rp
ℓ , resulting in larger partial liquidations.

Large Banks without Partial Liquidations. What might happen if there were a large (positive

mass) bank whose problem otherwise paralleled that of small (infinitessimal) banks, including the

all-or-nothing liquidation choice? We verbally sketch and discuss this possibility when there is

one large bank and a continuum small banks. Suppose that arbitrageurs have enough capacity to

absorb small bank failures at a high fixed liquidation price, but failure by the large bank is enough to

exhaust capacity and lead to a discretely lower liquidation price. The large bank would potentially

want to use standard debt, internalizing that its failure leads to a fire sale but not caring about the

negative externality on small banks. On the other hand, the social planner would have an incentive

to reduce the probability of large bank failure to mitigate externalities on small banks. As in the

baseline model, the planner faces a trade-off: failure of the large bank has social costs via the

fire sale, but restricting its standard debt lowers its investment capabilities ex ante. In particular,

if the likelihood ratio is sufficiently small at low returns, we conjecture that the planner would

find it optimal for the large bank to use standard debt, even at the risk of large bank failure and

accompanying fire sales. Intuitively as the likelihood ratio approaches zero, standard debt more

closely resembles an off-path liquidation threat, since a bank that exerts high effort is unlikely to

fail but a bank that exerts low effort is likely to fail.48 As a result, the planner would likely be

willing to endure small failure risks in exchange for larger ex ante scale, but might still sharply limit

large bank standard debt relatively to the private optimum. We further conjecture that if instead the

48In fact, if e∗0 = 1 and Λ1(R′
1) = 0, then the liquidation threat is entirely off-path at Rℓ ≤ R′

1.
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severity of the fire sale were large and the likelihood ratio not too low, the planner would respond

by requiring the large bank to set Rs
ℓ ≤ R, eliminating large bank failures entirely. While in this

environment the planner would impose a bail-in regime for the large bank, the planner would not

impose the regime on small banks if small bank failures weren’t contributing to fire sales.

6.3 Relation to Demand-Based Explanations for Standard Debt

Our model provides an incentive-based explanation for standard debt. Another important explanation

is demand-based: investors assign a special preference to safe debt, which makes safe debt cheaper

to issue (Bolton and Oehmke, 2019; Walther and White, 2020). Demand-based explanations are by

no means mutually exclusive with ours, but it is important to highlight some of the differences.

Our model uses a single contracting friction, repeated unobservable effort, to rationalize the

joint existence of standard and bail-in debt. A pure demand-based (safety premium) story has

two important points to reconcile. First, a safety premium means that costly liquidations are also

inefficient ex ante. Banks thus have strong incentives to write hedging contracts to protect standard

debt and prevent liquidation. Yet, the costly insolvencies we see in practice are a basis for introducing

bail-in regimes. Both Bolton and Oehmke (2019) and Walther and White (2020) reconcile this in

part by assuming that banks are unable to write such hedging contracts (incomplete markets).49 Our

model predicts that banks do not hedge standard debt, that is banks use noncontingent contracts even

though markets are complete. Our model thus provides a unified explanation for why we observe

costly liquidations in practice. Second, a pure safety premium story implies Modigliani-Miller

holds for the residual capital structure of the bank, giving no clear role for bail-in debt per se. Both

Bolton and Oehmke (2019) and Walther and White (2020) incorporate one period of unobservable

effort to give a clear role for bail-in debt over equity. Our model unifies the explanation for the

desirability of both standard debt and bail-in debt over equity from repeated unobservable effort.

Finally, our model uses the single externality of fire sales to rationalize joint regulation that pairs a

49Bolton and Oehmke (2019) also offers an insightful observation that resolution authorities themselves may prevent
hedging across countries “by ring-fencing assets” (p. 2390).
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total leverage requirement (minimum equity requirement) with an additional limit on standard debt.

Incorporating a special preference for safe debt into our model can offer a more complete

perspective on bank capital structure. For example, our model provides no role for deposit insurance,

which impairs the incentive benefits of standard debt. Appendix B.2 provides a simple extension

in which a planner protects a class of insured deposits to preserve their safety premium.50 If

liquidations are not too costly, the social planner allows banks to issue both insured standard debt

(e.g., retail deposits) and uninsured standard debt (e.g., wholesale funding). Liquidation occurs

when total standard debt exceeds pledgeable income, consistent with the common FDIC practice of

resolving small insolvent banks by using either liquidation or merger, both of which could be seen

as a possibly costly reallocation of the bank to the next best user.51

7 Conclusion

We develop a simple and tractable dynamic contracting model in which the privately optimal bank

contract can be implemented with a combination of standard and bail-in debt. In the presence of

fire sale externalities from bank failures, a social planner intervenes by altering both the level and

composition of debt, rationalizing joint regulation of both elements of the bank’s capital structure

through a combination of a a maximum leverage requirement and a TLAC requirement that can be

satisfied by bail-in debt. Bail-ins are a desirable addition to the regulatory toolkit because bail-in

debt is better suited than (outside) equity to address the incentive problem that motivated banks to

issue standard debt in the first place. Our model suggests that bail-ins have the potential to replace

bailouts in the post-crisis response kit, and that pairing bail-ins with statutory commitments against

bailouts can be welfare-improving.

There are a few interesting possible directions in which our framework could be extended.

50See for example Dewatripont and Tirole (2018) and Farhi and Tirole (2021) for safety premia as a motivation for
deposit insurance.

51There is little meaningful difference between public and private insurance in this extension, so we could also view
this as an explanation of secured standard debt, possibly also protected by hedges, and unsecured standard debt, not
protected by hedges. It can also explain the exemption of repurchase agreements from the automatic stay: disorderly
collateral seizure both protects secured creditors and promotes liquidation.
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First, our model had two periods of effort choice and made assumptions so that high effort choice

was optimal in the second stage. We conjecture that the key insights of our model would arise in a

longer horizon model: liquidations would be costly but strong incentive devices, while maximal

cash flow transfers (“bail-ins”) would be less costly but weaker incentive devices. It is possible that

pledging contracts that induce future shirking (low effort) after low returns could be an optimal

form of money burning, similar to liquidation, by reducing continuation agency rents. The policy

implications of such a model would be an interesting avenue for future research. Second, our

model assumes that the banker is not severable from the bank, that is the banker cannot be fired

without also liquidating the bank. Standard debt thus transfers control rights to investors, whose

best option is liquidation. If the banker were severable but firings were costly, we conjecture the

government might prefer to use costly firings and bail-ins to provide high-powered incentives, rather

than liquidations. Another interesting avenue for future research would be to consider socially

optimal punishment schemes in this context.
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R1

Pledgeable Income ((1 − b)R1Y0)

Face Value of Liabilities (L(R1))

R` Ru

Standard debt

Bail-in debt

Bankruptcy/Liquidation Write Down No Write Down

Figure 1: This figure provides an illustration for the form of the privately optimal contract. Up to a
threshold Rℓ, bank liabilities are constant and exceed pledgeable income, leading to liquidations.
Between Rℓ and Ru, the face value of liabilities is written down to coincide with pledgeable income
(“bail-ins” or “write downs”). Above Ru, the face value of liabilities is constant. We refer to Rℓ as
the amount of “standard debt,” Ru −Rℓ is the amount of “bail-in debt,” and Ru is the total amount of
debt.

.
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A Proofs

A.1 Definitions of Objects in Assumptions

We begin by defining the objects in Assumptions 2(d) and 2(e).

Assumption 2(d): Definition of B0. We define

B0 = E[R1 − x̃(R1)|e0 = 1]−E[R1 − x̃(R1)|e0 = 0], (30)

where x̃(R1) = min{γR∗,(1−b)R1}, where R∗ is defined implicitly by Λ1(R∗) = 1, and where b is

defined in Lemma 1. Intuitively, this bound means that the bank can issue γR∗ in bail-in debt while

maintaining incentives for highest effort at date 0, e∗0 = 1.52

Assumption 2(e): Definition of B′′
0 . We define

B′′
0 = b · sup

R′ |Λ1(R′)<1
(Λ1(R′)−1 −1)

∫ R′

R
R1( f1L(R1)− f1H(R1))dR1. (31)

This assumption ensures the incentive effects of liquidations are not so strong that the probability

of bank failure decreases when the bank commits to liquidate more often. The lower bound is not

necessary if the private benefit of effort is linear, B0(e0) = b0 · (1− e0), since in that case effort is at

an upper corner solution under optimal contracts.

A.2 Proof of Lemma 1

Consider the problem of the bank. The bank chooses a contract C in order to maximize utility,

E [c(R1)|e0 = e∗0]+B0(e∗0)Y0

subject to (IC-0),

−B′
0(e

∗
0) = E0

[
c(R1)(Λ1(R1)−1)

∣∣∣∣e0 = 0
]
,

52Absent this assumption, optimal contracts would still combine standard and bail-in debt. However, in the corner
solution where banks only issue standard debt, banks might find it optimal to commit to liquidation even when debt
could be fully repaid, and pay themselves a liquidating dividend. This would serve the purpose of holding down
repayment to investors to the standard debt level to maintain effort incentives, hence we assume that the bank can
always pledge the liquidation value as a bail-in debt contract and maintain strong incentives.
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to (IC-1),

E
[

c2(R1,R2)(Λ2(R2)−1)
∣∣∣∣e1 = 0

]
≥ B1R1Y0,

to (P),

Y0 −A0 ≤ E [x(R1)|e0 = e∗0] .

and to monotonicity (M1) and (M2),

R1 ≥ R′
1 ⇒ x(R1)≥ x(R′

1)

R2 ≥ R′
2 ⇒ x2(R1,R2)≥ x2(R1,R′

2)

and the resource constraints (BC-1) and (BC-2),

c1(R1) = α(R1)γR1Y0 − x1(R1)

c2(R1,R2) = (1−α(R1))R1R2Y0 − x2(R1,R2)

Observe that bank utility, (IC-0), (M1), and (P) depend only on (α,c,x) and not on the distribution

of claims over time (ct ,xt).

The strategy is as follows. Let (α,c,x) be a contract that satisfies (IC-0), (P), and (M2). Take a

return R1, if any, with α(R1) = 0. We look to see whether we can find a division of payoffs (ct ,xt)

so that it also satisfies (IC-1), (M2), (BC-1), and (BC-2). Formally, we can represent this problem

as choosing (ct ,xt) to maximize slack in incentive compatibility,

S(R1) = E
[

c2(R1,R2)(Λ2(R2)−1)
∣∣∣∣e1 = 0

]
−B1R1Y0

subject to (M2), (BC-1), (BC-2), and subject to the definitions of c(R1) and x(R1). Thus the contract

is feasible iff S(R1)≥ 0 for all R1 with α(R1) = 0. The problem of maximizing slack in incentive

compatibility, while pledging an amount of repayment to investors, is the dual of a standard Innes

(1990) problem with binary effort, and hence we know the (weakly) optimal monotone contract is a

debt contract (where x1(R1) = 0 is weakly optimal)

x1(R1) = 0

x2(R1,R2) =

{
R2R1Y0, R2 ≤ Ru

2(R1)

Ru
2(R1)R1Y0, R2 > Ru

2(R1)

Since this contract satisfies (M2), it remains only to evaluate incentive compatibility from the
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implied bank consumption profile generated from (BC-1) and (BC-2). We have

S(R1) =
∫ R

Ru
2(R1)

[
R2 −Ru

2(R1)

]
R1Y0(Λ2(R2)−1) f2L(R2)dR2 −B1R1Y0,

which is nonnegative if

∫ R

Ru
2(R1)

[
R2 −Ru

2(R1)

]
( f2H(R2)− f2L(R2))dR2 ≥ B1.

Thus, define Ru
2 as the highest value that satisfies the above equation,

∫ R

Ru
2

[
R2 −Ru

2

]
( f2H(R2)− f2L(R2))dR2 = B1,

and observe that it does not depend on R1. Thus, (IC-1) is satisfied only if Ru
2(R1)≤Ru

2. Equivalently,

a debt contract that guarantees (IC-1) eixsts only if

c(R1)≥ bR1Y0

where b ≡ ∫ R
Ru

2
[R2 −Ru

2] f2H(R2)dR2. This concludes the proof.

A.3 Proof of Proposition 1

Exploiting Lemma 1, we represent the problem over (α,x,c), with Lemma 1 providing the split

(ct ,xt). After deriving the optimal contract, we represent it in terms of a liability structure L.

The bank’s optimization problem is:

max
α,x,c,e∗0,Y0

E [c(R1)|e0 = e∗0]+B0(e∗0)Y0

subject to

−B′
0(e

∗
0)Y0 = E0

[
c(R1)(1−Λ1(R1)

−1)

∣∣∣∣e0 = 1
]
.

Y0 −A = E[x(R1)|e0 = e∗0]

R1 ≥ R′
1 ⇒ x(R1)≥ x(R′

1)

c(R1)≥ (1−α(R1))bR1Y0

x(R1) = α(R1)γR1Y0 +(1−α(R1))R1Y0 − c(R1)

50



where the first constraint is IC-0, the second is (P), the third is (M1), the foruth is the pledgeability

constraint (equation 18 from Lemma 1), and the last is consolidated budget constraint from (BC-1)

and (BC-2). It slightly eases exposition to write in terms of Λ
−1
1 above. Bank limited liability is

implied by the pledgeability constraint and so is dropped.53

The proof strategy is to first show that if we conjectured the monotonicity constraint (M1),

the contract would be non-monotone at the top. This will lead to an upper pooling region in

investor repayment. We then derive the optimal contract, conjecturing a pooling threshold, and

show monotonicity does not bind below that pooling threshold. Finally, we solve for the optimal

thresholds.

Conjecture first that the monotonicity constraint never binds. For purely technical reasons, we

introduce an investor limited liability constraint x(R1)≥−x on only the relaxed problem. We show

that this relaxed problem generates a contract that violates monotonicity at the top, giving rise to an

upper pooling region. The Lagrangian of this relaxed problem, substituting out x via the resource

constraint, is
L =E [c|e0 = e∗0]+B0(e∗0)Y0

+µ
[
E
[
c(1−Λ

−1
1 )|e0 = 1

]
+B′

0(e
∗
0)Y0

]
+λ [E [αγR1Y0 +(1−α)R1Y0 − c|e0 = e∗0]+A0 −Y0]

+E [χ (c− (1−α)bR1Y0) |e0 = 1]

+E [ζ ((αγR1Y0 +(1−α)R1Y0 − c+ x)) |e0 = 1]

where the last line is the investor limited liability constraint introduced for technical reasons x ≥−x.

The conditionings of the last two lines on e0 = 1 are without loss and correspond to different

selections of Lagrange multipliers. From here, first order condition for bank consumption c(R1) is

0 = f1(R1|e∗0)+µ(1−Λ1(R1)
−1) f1H(R1)−λ f1(R1|e∗0)+χ(R1) f1H(R1)−ζ f1H(R1)

=
f1(R1|e∗0)
f1H(R1)

(1−λ )+µ(1−Λ1(R1))+χ(R1)−ζ (R1)

= (1−λ )e∗0 +µ −
[
(λ −1)(1− e∗0)+µ

]
Λ1(R1)

−1 +χ(R1)−ζ (R1)

By MLRP, there is a threshold R∗ such that χ(R1)> 0 for R1 ≤ R∗ and ζ (R1)> 0 for R1 ≥ R∗. This

threshold is given by

(1−λ )e∗0 +µ −
[
(λ −1)(1− e∗0)+µ

]
Λ1(R∗)−1 = 0 (32)

53The problem is set up assuming e∗1(R1) = 1, which is then verified to be optimal.

51



However, this contract violates monotonicity unless x(R1) is constant for all R1 or R∗ =R. Therefore,

we have an upper pooling region in the optimal contract, where investor repayment is constant.54

We now characterize the optimal contract using the following strategy. First, we conjecture

a pooling thresholds Ru with corresponding xu ≡ x(Ru), so that x(R1) = xu for all R1 ≥ Ru. Note

that this is without loss, since the pooling threshold could be Ru = R. We then solve for the optimal

contract below Ru, taking as given Ru and xu, subject to monotonicity and subject to x(R1) ≤ xu,

and verify that the resulting contracting is monotone. In doing so, we characterize the space of

implementable contracts (that satisfy monotonicity). Finally, we optimize over the choice of Ru and

xu.

Conjecture a pooling threshold Ru with corresponding liabilities xu. Observe that in the

analysis that follows if the constraint x(R1) ≤ xu binds for some R′
u < Ru, then we can without

loss of generality discard (Ru,xu) as a candidate and instead consider the contract (R′
u,xu). What

remains therefore is monotonicity within R1 < Ru for candidate thresholds. We solve the relaxed

problem not subject to monotonicity and verify it generates a monotone liability structure. The

associated Lagrangian is given by

L =E [c|e0 = e∗0]+B0(e∗0)Y0

+µ
[
E
[
c(1−Λ

−1
1 )|e0 = 1

]
+B′

0(e
∗
0)Y0

]
+λ [E [αγR1Y0 +(1−α)R1Y0 − c|e0 = e∗0]+A0 −Y0]

+E [χ (c− (1−α)bR1Y0) |e0 = 1]

where note that we have now dropped the ad hoc investor limited liability constraint used above.

Taking the derivative in consumption c(R1) for R1 ≤ Ru, we obtain

0 = (1−λ )
f1(R1|e∗0)
f1H(R1)

+µ(1−Λ1(R1)
−1)+χ(R1).

0 = (1−λ )e∗0 +µ −
[
(λ −1)(1− e∗0)+µ

]
Λ1(R1)

−1 +χ(R1).

Since the resulting contract is non-monotone if Ru > R∗ (MLRP), we discard candidate contracts

with Ru > R∗. From the definition of R∗ and from MLRP, we therefore have χ(R1) > 0 for all

R1 < Ru.

54If L(R1) is constant, then the entire contract is pooled. If R∗
1 = R, then the results that follow apply setting Ru = R

to be the pooling threshold.
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Now, consider the derivative in liquidations α(R1), given by55

∂L

∂α(R1)
=

[
−λ (1− γ)+

f1H(R1)

f1(R1|e∗0)
χ(R1)b

]
R1Y0 f1(R1|e∗0)

Substituting in for χ(R1), observe that we have

f1H(R1)

f1(R1|e∗0)
χ(R1) = (λ −1)+µ

Λ1(R1)
−1 −1

e∗0 +(1− e∗0)Λ1(R1)−1

Therefore, by MLRP liquidations are only potentially valuable in the region where R1 ≤ R̂, where

R̂ is defined by Λ1(R̂)−1 = 1. Since Λ1(R1)
−1−1

e∗0+(1−e∗0)Λ1(R1)−1 is an increasing function of Λ1(R1)
−1 in the

region R1 < R̂, then by MLRP there is a threshold Rℓ such that α(R1) = 1 if and only if R1 < Rℓ

(note it is possible for Rℓ = R). Observe that since χ(R1) > 0 in this region, then c(R1) = 0 in

liquidation.

Finally, in the region (if non-empty) between Rℓ and Ru, we know that χ(R1)> 0 and therefore

x(R1) = (1−b)R1Y0 for all Rℓ ≤ R1 ≤ Ru.

As a result, the optimal contract is a three-part structure. First, there is a lower region R1 < Rℓ

in which we have α(R1) = 1 and x(R1) = γR1Y0 (and hence c(R1) = 0). Second, there is a middle

region Rℓ ≤ R1 ≤ Ru such that α(R1) = 0 and x(R1) = (1− b)R1Y0, and hence c(R1) = bR1Y0.

Finally, there is an upper region R1 ≥ Ru in which α(R1) = 0 and x(R1) = xu, and hence c(R1) =

R1Y0 − xu.56 To complete this part of the characterization, we show that there cannot be an upward

discontinuity in x at Ru. If there were an upward discontinuity, we would have

xu > lim
R1↑Ru

x(R1) = (1−b)RuY0

and hence the pledgeability constraint is violated at Ru, a contradiction. The capital structure is

therefore continuous at Ru.57

Finally, the above capital structure can be implemented by a liabilities contract L(R1) =

(1−b)RℓY0 for R1 ≤ Rℓ and L(R1) = x(R1) for R1 > Rℓ, as stated in the proposition. We have now

55Implicitly, we are treating α(R1) as a continuous variable in performing the differentiation. To do so, we implicitly
incorporate the constraint α(R1)(1−α(R1)) = 0, which ensures that implementable contracts must set α(R1) ∈ {0,1}.
The logic below is unaffected.

56We have ruled out the possibility of Rℓ = Ru but liquidations extend into the pooling region by the bound B0
(Assumption 2(d)). Formally, if this were to hold, then by continuity xu = γRℓY0 ≤ γRℓY0. But since we have assumed
that pledging Rℓ = 0 and xu = γRℓY0 induces e∗0 = 1, then a contract with liquidations in the pooling region is trivially
dominated by this contract.

57Assumption 2(f) guarantees that low effort is never optimal. In the region R1 < R∗
u, low effort is dominated by

liquidation, since liquidation both increases investor payoff and reduces bank payoff. In the region R1 ≥ R∗
u, low effort

is dominated by continuation, since continuation increases payoffs available to both investors and banks.
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proven the first part of the proposition.

Optimal Thresholds. Finally, we characterize the optimal thresholds Rℓ and Ru. To do so, we

internalize the determiniation of effort, e∗0(Rℓ,Ru), into the problem, where e∗0 solves

−B′
0(e

∗
0(Rℓ,Ru))=

∫ Ru

Rℓ

bR(1−Λ1(R1)
−1) f1H(R1)dR1+

∫ R

Ru

[R1 − (1−b)Ru] (1−Λ1(R1)
−1) f1H(R1)dR1

Focusing on the case where thresholds are interior and not equal, R < Rℓ < Ru < R, the bank

Lagrangian is

L =
∫ Ru

Rℓ
bR1Y0 f1(R1|e∗0)dR1 +

∫ R
Ru
[R1 − (1−b)Ru]Y0 f1(R1|e∗0)dR1 +B0(e∗0)Y0

+λ

[
A0 −Y0 +

∫ Rℓ
R γR1Y0 f1(R1|e∗0)dR1 +

∫ Ru
Rℓ

(1−b)R1Y0 f1(R1|e∗0)dR1 +
∫ R

Ru
(1−b)RuY0 f1(R1|e∗0)dR1

]
By Envelope Theorem, the optimality condition for Rℓ is

0 =−bRℓY0 f1(Rℓ|e∗0)+λ

(
γ − (1−b)

)
RℓY0 f1(Rℓ|e∗0)+λ

∫ R

R
x(R1)( f1H(R1)− f1L(R1))

∂e∗0
∂Rℓ

dR1

From above, we have

−B′′
0(e

∗
0(Rℓ,Ru))

∂e∗0
∂Rℓ

= bRℓ(Λ1(Rℓ)
−1 −1) f1H(Rℓ)

and therefore substituting in and rearranging, we obtain

b(Λ1(Rℓ)
−1 −1) f1H(Rℓ)

f1(Rℓ|e∗0)
|B′′

0(e
∗
0)|

λ

∫ R

R

x(R1)

Y0
( f1H(R1)− f1L(R1))dR1 = b+λ

(
1−b− γ

)
.

From here, we define G = E[x(R1)
Y0

|e0 = 1]−E[x(R1)
Y0

|e0 = 0] to obtain

1−Λ1(Rℓ)

(1− e∗0)+ e∗0Λ1(Rℓ)

1
|B′′

0(e
∗
0)|

bλG = b+λ

(
1−b− γ

)
giving the first result.

Analogously, the optimality condition for Ru is

0=−(1−b)
∫ R

Ru

Y0 f1(R1|e∗0)dR1+λ (1−b)
∫ R

Ru

Y0 f1(R1|e∗0)dR1+λ

∫ R

R
x(R1)( f1H(R1)− f1L(R1))

∂e∗0
∂Ru

dR1
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From above, we have

−B′′
0(e

∗
0(Rℓ,Ru))

∂e∗0
∂Ru

=−(1−b)
∫ R

Ru

(1−Λ1(R1)
−1) f1H(R1)dR1

and therefore substituting and rearranging, we obtain

λ

∫ R
Ru
( f1H(R1)− f1L(R1))dR1

|B′′
0(e

∗
0)|

∫ R

R

x(R1)

Y0
( f1H(R1)− f1L(R1))dR1 = (λ −1)

∫ R

Ru

f1(R1|e∗0)dR1

F1L(R1)−F1H(Ru)

|B′′
0(e

∗
0)|

λG = (λ −1)(1−F1(Ru|e∗0))

which concludes the proof.

A.3.1 A Remark on Contract Uniqueness

The optimal contract, expressed in liabilities L, is not generally unique in the following sense. In

the region R ≤ Rℓ, the bank only needs a liability face value that is sufficient to liquidate the bank,

and so any contract with monotone face value L(R1)> (1−b)R1Y0 in this region is optimal. We

selected the contract with a flat face value below Rℓ due to its correspondence to standard debt.

A.4 Proof of Corollary 1

Consider the proposed liability structure. The amount (1− b)RℓY0 of short-term standard debt

liquidates the bank when R1 ≤ Rℓ, generating the lower region. Long-term bail-in debt (1−b)(Ru−
Rℓ) is written down to (1−b)(R1 −Rℓ) in the region Rℓ ≤ R1 ≤ Ru, so that the bank is always held

to the agency rent over this region (while short-term standard debt is fully repaid). The full debt

level (1− b)RuY0 (both short-term standard debt and long-term bail-in debt) is repaid above Ru.

Therefore, we replicate the contract in Proposition 1.

A.5 Proof of Proposition 2

We split the proof into the different cases.

Case 1: Suppose first that B0(e0) = 0. Optimal effort at date 0 satisfies the corner solution e∗0 = 1 if

E [c(R1)(Λ(R1)−1) |e0 = 0]≥ 0,
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and satisfies e∗0 = 0 otherwise. For any monotone c, we have

E [c(R1)(Λ1(R1)−1) |e0 = 0] = cov(c(R1),Λ(R1)−1)≥ 0

where the inequality follows from MLRP. As a result, any monotone consumption rule c satisfies

(IC-0) at e∗0 = 1. Thus the optimal contract structure is determined by date 2 payoffs of Lemma 1,

with no liquidations at date 1, and corresponds to bail-in debt.

Case 2: Consider next B1 = 0. From Lemma 1, Ru
2 = R and therefore b = 0. The RHS of (20)

collapses to λ (1− γ) > 0 while the LHS collapses to 0, and so banks choose a corner solution

Rℓ = R. Optimal contracts use only bail-in debt.

Case 3: Consider finally γ = 1. Any face value L(R1) ≤ R1Y0 can then be repaid by liquidating

assets, so that bank consumption is c(R1) = R1Y0 −L(R1) for any L(R1)≤ R1Y0. Therefore for any

liability structure L(R1), we can define

(c(R1),x(R1)) =

{
(R1Y0 −L(R1),L(R1)) , L(R1)≤ R1Y0

(0,R1Y0) , L(R1)≥ R1Y0

where the relevant liquidation function α(R1) is defined from the liability structure. Minimum

pledgeability never binds. One interpretation is that if (1−b)R1Y0 < L(R1)< R1Y0, then we have

liquidation with a liquidating dividend paid to equity.

Defining the problem in the repayment space, we then have

max
∫

R1

[R1Y0 − x(R1)] f1(R1|e∗0)dR1 +B0(e∗0)Y0

subject to

−B′
0(e

∗
0)Y0 =

∫
R1

[R1Y0 − x(R1)]
(
1−Λ1(R1)

−1) f1H(R1)dR1

Y0 −A =
∫

R1

x(R1) f1(R1|e∗0)dR1

R1 ≥ R′
1 ⇒ x(R1)≥ x(R′

1)

with 0 ≤ x(R1) ≤ R1Y0. This problem is therefore identical to the baseline model except that

liquidation is no longer an explicit choice variable but is instead implied by the repayment structure.

MLRP implies the existence of an upper pooling region as in the proof of Proposition 1. Thus as

in the proof of Proposition 1, we have an upper pooling region with x(R1) = xu for R1 ≥ Ru and

x(R1) = R1Y0 for all R ≤ Ru. The same continuity argument implies x(Ru) = RuY0. Hence, we can

56



set L(Ru) = RuY0, which is standard debt.

A.6 Proof of Proposition 3

The proof of Lemma 1 follows identically from before. The decision problem of the social planner

is therefore

max
α,x,c,e∗0,γ

E [c(R1)|e0 = e∗0]+B0(e∗0)Y0

subject to

−B′
0(e

∗
0)Y0 = E0

[
c(R1)(1−Λ1(R1)

−1)

∣∣∣∣e0 = 1
]
.

Y0 −A = E[x(R1)|e0 = e∗0]

R1 ≥ R′
1 ⇒ x(R1)≥ x(R′

1)

c(R1)≥ (1−α(R))bR1Y0

c(R1) = αγR1Y0 +(1−α)γR1Y0 − x(R1)

γ = γ

(
Ω

)
, Ω =

∫
α(R1)R1 f1(R1|e∗0)dR1

All aspects of this optimization problem are identical to the private program in the proof of

Proposition 1, except that the planner internalizes the effect on the liquidation price. We proceed

by internalizing the liquidation price determination γ and the liability structure x into the decision

problem.

The proof now proceeds in parallel to that of Proposition 1. The Lagrangian of the relaxed

problem not subject to monotonicity is analogous to Proposition 1, with the endogenous liquidation

price,
L =E [c|e0 = e∗0]+B0(e∗0)Y0

+µ
s [E[

c(1−Λ
−1
1 )|e0 = 1

]
+B′

0(e
∗
0)Y0

]
+λ

s [E [αγ(Ω)R1Y0 +(1−α)R1Y0 − c|e0 = e∗0]+A0 −Y0]

+E [χs (c− (1−α)bR1Y0) |e0 = 1]

+E [ζ s ((αγ(Ω)R1Y0 +(1−α)R1Y0 − c+ x)) |e0 = 1]

where we use the s notation to distinguish social planner’s Lagrange multipliers from the bank’s

Lagrange multipliers. Since the liquidation price does not depend directly on c(R1), the first order
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condition for consumption c(R1) thus takes the same form as in the proof of Proposition 1,

0 = (1−λ
s)e∗0 +µ

s −
[
(λ s −1)(1− e∗0)+µ

s
]

Λ1(R1)
−1 +χ

s(R1),

and so by MLRP there is a threshold Rs such that χs(R1) > 0 for R1 ≤ Rs and ζ s(R1) > 0 for

R1 ≥ Rs, where we have

(1−λ
s)e∗0 +µ

s −
[
(λ s −1)(1− e∗0)+µ

s
]

Λ1(Rs) = 0 (33)

Therefore, as in the proof of Proposition 1, we have an upper pooling region.

Let Rs
u be the pooling threshold and xs

u be the pooling level, so that x(R1) = xs
u for R1 ≥ Rs

u.

As before, take Rs
u and xs

u as given, and solve for the optimal contract for R1 ≤ Rs
u. The planner’s

Lagrangian is

L =E [c|e0 = e∗0]+B0(e∗0)Y0

+µ
s [E[

c(1−Λ
−1
1 )|e0 = 1

]
+B′

0(e
∗
0)Y0

]
+λ

s [E [αγ(Ω)R1Y0 +(1−α)R1Y0 − c|e0 = e∗0]+A0 −Y0]

+E [χs (c− (1−α)bR1Y0) |e0 = 1]

The same steps imply that implementable contracts must satisfy Ru < Rs for the same definition

of Rs, else the contract would be non-monotone. Taking the derivative in consumption c(R1) for

R1 ≤ Ru, we obtain

0 = (1−λ
s)

f1(R1|e∗0)
f1H(R1)

+µ
s(1−Λ1(R1))+χ

s(R1).

Therefore, as in the proof of Proposition 1, we have χs(R1)> 0. Next taking the FOC for liquidations

α(R1), we have

∂L

∂α(R1)
= λ

s(γ −1)R1Y0 f1(R1|e∗0)+χ
sbY0 f1H(R1)+λ

s dγ(Ω)

dα(R1)
E
[

αR1Y0

∣∣∣∣e = e∗0

]

We have dγ

dα(R1)
= ∂γ

∂Ω
R1 f1(R1|e∗0) and E

[
αR1

∣∣∣∣e = e∗0

]
= Ω, so using the definition σ =−Ω

γ

∂γ

∂Ω
we

can write
∂L

∂α(R1)
=

[
λ

s(γ −1−σγ)+
f1H(R1)

f1(R1|e∗0)
χ

s(R1)b
]

f1(R1|e∗0)Y0.

Thus, as in the proof of Proposition 1, substituting in for χs(R1) and applying MLRP shows that
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there is a threshold Rs
ℓ for liquidations, that is α(R1) = 1 iff R < Rs

ℓ. As in the proof of Proposition

1, since χ(R1)> 0 then x(R1) = γR1Y0 when R1 < Rs
ℓ and x(R1) = (1−b)R1Y0 when Rs

ℓ ≤ R1 ≤ Rs
u.

Finally, the same continuity argument implies xs
u = (1−b)Rs

uY0.

Therefore, we have shown that the socially optimal contract can be implemented by a combi-

nation of standard and bail-in debt, with corresponding thresholds Rs
ℓ and Rs

u.58

Socially Optimal Thresholds. Finally, we characterize the socially optimal thresholds Rs
ℓ and Rs

u.

As in the proof of Proposition 1, we define effort e∗0(Rℓ,Ru) implicitly as the solution to

−B′
0(e

∗
0(Rℓ,Ru))=

∫ Rs
u

Rs
ℓ

bR(1−Λ1(R1)
−1) f1H(R1)dR1+

∫ R

Rs
u

[R1 − (1−b)Rs
u] (1−Λ1(R1)

−1) f1H(R1)dR1

]
It is important to note that effort does not depend directly on the liquidation price. The social

planner’s Lagrangian is

L =
∫ Rs

u
Rs
ℓ

bR1Y0 f1(R1|e∗0)dR1 +
∫ R

Rs
u
[R1 − (1−b)Rs

u]Y0 f1(R1|e∗0)dR1 +B0(e∗0)Y0

+ λ s
[

A0 −Y0 +
∫ Rs

ℓ
R γ(Ω)R1Y0 f1(R1|e∗0)dR1 +

∫ Rs
u

Rs
ℓ
(1−b)R1Y0 f1(R1|e∗0)dR1

+
∫ R

Rs
u
(1−b)Rs

uY0 f1,(R1|e∗0)dR1

]

where Ω =
∫ Rs

ℓ
R R1 f1(R1|e∗0(Rs

ℓ,R
s
u))dR1.

The optimality condition for Rs
ℓ is

0 = −bRs
ℓY0 f1(Rs

ℓ|e∗0)−λ s(1−b− γ)Rs
ℓY0 f1(Rs

ℓ|e∗0)+λ s ∫ x(R1)( f1H(R1)− f1L(R1))
∂e∗0
∂Rℓ

dR1

+λ s ∫ Rs
ℓ

R
∂γ

∂Ω

dΩ

dRs
ℓ
R1Y0 f1(R1|e∗0)dR1

.

The first line parallels the terms from the bank’s optimum, while the second line accounts for the

fire sale externality. Observe that we have

λ
s
∫ Rs

ℓ

R

∂γ

∂Ω

dΩ

dRs
ℓ

R1Y0 f1(R1|e∗0)dR1 = λ
s ∂γ

∂Ω
Ω

dΩ

dRs
ℓ

Y0 = λ
s
σγ

dΩ

dRs
ℓ

Y0

which follows from the definition of σ . Finally, we have

dΩ

dRs
ℓ

=
d

dRs
ℓ

∫ Rs
ℓ

R
R1 f1(R1|e∗0)dR1 = Rs

ℓ f1(Rs
ℓ|e∗0)+

∫ Rs
ℓ

R
R1( f1H(R1)− f1L(R1))

∂e∗0
∂Rs

ℓ

dR1

58As in the proof of Proposition 1, Assumption 2(d) rules out liquidating dividends. Assumptions 2(f) and 3 rule out
low effort at date 1 by the same dominance argument as in the proof of Proposition 1.
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We can therefore, following the steps of the proof of Proposition 1, rearrange to obtain

1−Λ1(Rs
ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

bλ
sGs = b+λ

s(1−b− γ
s)+ τ

s
ℓ

where the “wedge” τs
ℓ is given by

τ
s
ℓ =−

dΩ

dRs
ℓ

Rs
ℓY0 f1(Rs

ℓ|e∗0)
λ

s
σγ

sY0

=

(
1− 1−Λ1(Rs

ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

b
∫ Rs

ℓ

R
R1( f1L(R1)− f1H(R1))dR1

)
λ

s
σγ

s

=

(
1− 1−Λ1(Rs

ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

bLs
)

λ
s
σγ

s

where Ls =
∫ Rs

ℓ
R R1( f1L(R1)− f1H(R1))dR1. Given |B′′

0| ≥ B′′
0 , we have τs

ℓ ≥ 0.

Analogously, the optimality condition for Rs
u is

0 = (λ s −1)(1−b)
∫ R

Rs
u
Y0 f1(R1|e∗0)dR1 +λ s ∫ x(R1)( f1H(R1)− f1L(R1))

∂e∗0
∂Ru

dR1

+λ s ∫ Rs
ℓ

R
∂γ

∂Ω

dΩ

dRs
u
R1Y0 f1(R1|e∗0)dR1

Following the same steps as the proof of Proposition 1, we thus have

F1L(Rs
u)−F1H(Rs

u)

|B′′
0(e

∗
0)|

λ
sGs = (λ s −1)(1−F1(Rs

u|e∗0))− τ
s
u

where we have defined

τ
s
u =− 1

(1−b)Y0
λ

s
∫ Rs

ℓ

R

∂γ

∂Ω

dΩ

dRs
u

R1Y0 f1(R1|e∗0)dR1.

Substituting from here, we have

τ
s
u =

dΩ

dRs
u

1−b
λ

s
σγ

s.

Finally, we have

dΩ

dRs
u
=

d
dRs

u

∫ Rs
ℓ

R
R1 f1(R1|e∗0)dR1 =

∫ Rs
ℓ

R
R1( f1H(R1)− f1L(R1))

∂e∗0
∂Rs

u
dR1 =−Ls ∂e∗0

∂Rs
u
.
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Thus we obtain

τ
s
u =− ∂e∗0

∂Rs
u

1
1−b

λ
s
σγ

sLs =
F1L(Rs

u)−F1H(Rs
u)

|B′′
0(e

∗
0)|

λ
s
σγ

sLs.

Since MLRP implies first order stochastic dominance, τs
u ≥ 0, concluding the proof.

A.6.1 Decentralizing Social Optimum with Caps

We now show that the social optimum can be implemented with caps on standard and total debt, that

is requiring banks to set Rℓ ≤ Rs
ℓ and Ru ≤ Rs

u (rather than directly mandating these allocations).

Consider a bank that chooses its debt, (Rℓ,Ru), subject to the caps Rℓ ≤ Rs
ℓ and Ru ≤ Rs

u. We

internalize the investor participation constraint into bank utility to write bank utility over the debt

levels (Rℓ,Ru) and the liquidation price γ ,

U(Rℓ,Ru,γ)=

∫ Ru
Rℓ

bR1 f1(R1|e∗0)dR1 +
∫ R

Ru
[R1 − (1−b)Ru] f1(R1|e∗0)dR1 +B0(e∗0)

1− ∫ Rℓ
R γR1 f1(R1|e∗0)dR1 −

∫ Ru
Rℓ

(1−b)R1 f1(R1|e∗0)dR1 −
∫ R

Ru
(1−b)Ru f1(R1|e∗0)dR1

A0

where e∗0 = e∗0(Rℓ,Ru) is the effort level determined by the incentive constraint. The proof strategy

is to show that

(Rs
ℓ,R

s
u) ∈ argmax

Rℓ,Ru
U(Rℓ,Ru,γ

s) s.t. Rℓ ≤ Rs
ℓ, Ru ≤ Rs

u

where γs = γ(Ω(Rs
ℓ,R

s
u)) is the liquidation price under the socially optimal contract, and where we

throughout leave implicit that Rℓ ≤ Ru. The above is equivalent to verifying

U(Rs
ℓ,R

s
u,γ(Ω(Rs

ℓ,R
s
u))≥U(Rℓ,Ru,γ(Ω(Rs

ℓ,R
s
u)) ∀Rℓ ≤ Rs

ℓ, Ru ≤ Rs
u (34)

Verifying Equation 34: Because (Rs
ℓ,R

s
u) is socially optimal, then

U(Rs
ℓ,R

s
u,γ(Ω(Rs

ℓ,R
s
u)))≥U(Rℓ,Ru,γ(Ω(Rℓ,Ru))) ∀Rℓ ≤ Rs

ℓ, Ru ≤ Rs
u

As a first step, for any Rℓ < Rs
ℓ, from Assumption 2 we have Ω(Rs

ℓ,R
s
u)≥ Ω(Rℓ,Rs

u). Thus since U

increases in γ and γ decreases in Ω, we have

U(Rℓ,Rs
u,γ(Ω(Rs

ℓ,R
s
u)))≤U(Rℓ,Rs

u,γ(Ω(Rℓ,Rs
u)))≤U(Rs

ℓ,R
s
u,γ(Ω(Rs

ℓ,R
s
u))),

where the last inequality follows from the social planner’s optimality. Therefore, the bank prefers

(Rs
ℓ,R

s
u) to (Rℓ,Rs

u) for any Rℓ < Rs
ℓ.

We now extend this argument. Consider any point (Rℓ,Ru) with Ru < Rs
u. We begin by showing
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that Ω(Rℓ,Ru)≤ Ω(Rℓ,Rs
u). As derived in the proof of Proposition 1,

∂e∗0
∂Ru

=− 1
|B′′

0(e
∗
0(Rℓ,Ru))|

(1−b)
∫ R

Ru

( f1H(R1)− f1L(R1))dR1

=− 1
|B′′

0(e
∗
0(Rℓ,Ru))|

(1−b)
[

F1L(Ru)−F1H(Ru)

]
≤ 0

where the final inequality follows since MLRP implies first order stochastic dominance. Since

e∗0(Rℓ,Ru) decreases in Ru, then Ω(Rℓ,Ru) increases in Ru, so that

Ω(Rℓ,Ru)≤ Ω(Rℓ,Rs
u)≤ Ω(Rs

ℓ,R
s
u),

where the last inequality follows from the first step. But then once again since U increases in γ and

γ decreases in Ω, we have

U(Rℓ,Ru,γ(Ω(Rs
ℓ,R

s
u)))≤U(Rℓ,Ru,γ(Ω(Rℓ,Ru)))≤U(Rs

ℓ,R
s
u,γ(Ω(Rs

ℓ,R
s
u))),

where the last inequality follows from social planner optimization. Therefore, the bank prefers

(Rs
ℓ,R

s
u) to (Rℓ,Ru) for any (Rℓ,Ru)≤ (Rs

ℓ,R
s
u). This concludes the proof.

A.7 Proof of Corollary 2

We need only to verify that the ex post bail-in authority achieves the same outcome as the contractual

liabilites of the social optimum. In the region R1 < Rs
ℓ, the non-bail-inable senior debt exceeds asset

values, and the bail-in authority is unable to resolve the bank. The bank is liquidated.

In the region Rs
ℓ ≤ R1 < Rs

u, if the bail-in authority does not intervene then the bank gets 0,

senior non-bail-inable debt gets xS(R1) = min{(1−b)Rs
ℓ,γR1}Y0, and junior bail-inable debt gets

max{γR1Y0 − xS(R1),0}. If by contrast the bail-in authority intervenes, it recapitalizes the bank

with any haircut R′−Rs
ℓ ≤ R1 −Rs

ℓ ≤ Rs
u −Rs

ℓ to bail-inable junior debt. Senior non-bail-inable

debt gets fully repaid and is weakly better off. The bank gets payment bR′ and is better off. Junior

bail-inable debt gets (1−b)(R′−Rs
ℓ), and is better off local to R′ = R1 because γ < 1−b. Therefore,

there is a Pareto efficient haircut. The haircut that maximizes total recovery value to creditors is

R′ = R1, which is the same outcome as contractual bail-in debt.

In the region Rs
u ≤ R1, the bank is able to repay all debt in full while maintaining its minimum

agency rent. A haircut on bail-inable debt is not Pareto efficient, and the bail-in authority does not

act.
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Hence, the bail-in authority implements the social optimum.

A.8 Proof of Proposition 4

We adopt the following proof strategy. We will consider a contract that results in bailouts, and

show that it is equivalent to a contract that: (1) features bail-ins (rather than bailouts) ex post; and,

(2) implements an ex ante lump sum transfer from taxpayers to the bank. Thus, all contracts with

bailouts are equivalent to contracts without bailouts combined with lump sum transfers.

Suppose that there is a liability structure with a bailout at return R1, so that L(R1)> (1−b)R1Y0

and T1(R1) = L(R1)− (1 − b)R1Y0. This generates consumption profile c(R1) = bR1Y0 and a

repayment to investors x(R1) = L(R1) = (1− b)R1Y0 +T1(R1) = x̂(R1)+T1(R1), where x̂(R1) is

repayment out of bank resources. We denote repayment out of bank resources by x̂(R1) also at

points in which T1(R1) = 0, so that x̂(R1) = x(R1) if T1(R1) = 0. Substituting into the participation

constraint, we have

Y0 −A0 −E[T1(R1)|e0 = e∗0]≤ E[x̂(R1)|e0 = e∗0].

The problem is otherwise identical. Hence, from the bank perspective the bailout rule T1(R1) is

equivalent to moving from capital structure x to capital structure x̂, and also conducting a lump-sum

transfer T0 = E[T (R1)|e0 = e∗0] from taxpayers to the bank at date 0 (note that there is no change in

the liquidation rule, since banks that were bailed out are now able to repay investors).59 There is no

change in taxpayer welfare from this change in contract. Thus we can trace out the Pareto frontier in

terms of the socially optimally contract with no bailouts (Proposition 3), with movements along the

Pareto frontier only involving changes in the ex ante distribution of resources between banks and

taxpayers, represented by T0. To select the point on the Pareto frontier associated with the existing

distribution of resources, we need merely to characterize the Pareto weight that equalizes marginal

utility and so rule out desirability of the lump sum transfer. Defining the social welfare weight

on taxpayers to be ωT = λ s, then the social planner is indifferent to transfers between banks and

taxpayers at date 0. Thus we have equalized marginal utilities, meaning we have a Pareto efficient

contract of Proposition 3 without bailouts. This concludes the proof.

59Note that since x was monotone, then x̂ is also monotone. In particular, suppose that ∃R′
1 < R′′

1 with x̂(R′′
1)< x̂(R′

1).
If there were no bailouts at either R′

1 or R′′
1 , this contradicts that x was monotone. If there were bailouts at R′

1 but
not R′′

1 , then x(R′′
1) = x̂(R′′

1)< x̂(R′
1)≤ x(R′

1), contradicting that x was monotone. If there were bailouts at R′′
1 but not

R′
1, then x̂(R′

1)≤ (1−b)R′
1Y0 < (1−b)R′′

1Y0 = x̂(R′′
1), a contradiction. If there were bailouts at both R′

1 and R′′
1 , then

x̂(R′
1) = (1−b)R′

1Y0 < (1−b)R′′
1Y0 = x̂(R′′

1), a contradiction.
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A.9 Proof of Proposition 5

First, suppose that banks indeed set Rℓ = Rs
u. Then, the liquidation threshold is Rs

ℓ and the total

debt threshold is Rs
u, as in Proposition 3. Therefore, as in the proof of Proposition 4, we can define

investor repayment as x(R1) = x̂(R1)+T1(R1), where x̂(R1) is repayment out of bank resources.

Substituting into the investor participation constraint, we therefore have

Y0 − (A0 −T0)−E[T (R1)|e0 = e∗0]≤ E[x̂(R1)|e0 = e∗0].

Thus by instituting a transfer T0 = E[T (R1)|e0 = e∗0], the investor participation constraint reduces to

Y0 −A0 ≤ E[x̂(R1)|e0 = e∗0],

so that given the choice (Rs
ℓ,R

s
u) of the bank, then project scale is at the socially optimal level,

Y0 = Y s
0 . Therefore, banks and investors achieve the same outcome as in the social optimum of

Proposition 3, where we note that investors are no better off because they have received bailouts

but have also contributed more ex ante. Taxpayers have paid T0 at date 1 and received T0 ex ante,

and are no better or worse off. Finally, banks are strictly better off because they have moved to the

planner’s optimum. Thus we have implemented the social planner’s optimum in a Pareto efficient

manner, provided that banks indeed choose Rℓ = Rs
u.

Lastly, consider a bank’s optimal choice of Rℓ, holding fixed Rs
u. Any choice Rℓ ∈ [Rs

ℓ,R
s
u) loses

bailout funds and reduces project scale, while leaving the threshold Rs
ℓ for liquidation unchanged.

Therefore, the bank prefers Rℓ = Rs
u to any Rℓ ∈ [Rs

ℓ,R
s
u). It remains only to verify the bank would

not choose Rℓ < Rs
ℓ. A sufficient condition is to show that Rℓ < Rs

ℓ is dominated by Rℓ = Rs
u, even if

by selecting Rℓ < Rs
ℓ the bank would additionally received a transfer ex ante of the expected bailout

funds E[T (R1)|e0 = e∗0] that it had foregone by selecting Rℓ < Rs
ℓ (i.e., it is as-if the bank neither

benefits from bailouts nor has to pay for the bailout fund). Formally, we can write the bank’s utility

in this case as

U(Rℓ,Rs
u,γ

s)=

∫ Rs
u

Rℓ
bR1 f1(R1|e∗0)dR1 +

∫ R
Rs

u
[R1 − (1−b)Rs

u] f1(R1|e∗0)dR1 +B0(e∗0)

1− ∫ Rℓ
R γsR1 f1(R1|e∗0)dR1 −

∫ Rs
u

Rℓ
(1−b)R1 f1(R1|e∗0)dR1 −

∫ R
Rs

u
(1−b)Rs

u f1(R1|e∗0)dR1

A0

which internalizes the participation constraint into the objective function.

Because Rs
ℓ,R

s
u is socially optimal, then

U(Rs
ℓ,R

s
u,γ(Ω(Rs

ℓ,R
s
u))≥U(Rℓ,Rs

u,γ(Ω(Rℓ,Rs
u)) ∀Rℓ < Rs

ℓ

Because U is an increasing function of γ , γ is a decreasing function of Ω, and because Ω is an
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increasing function of Rℓ (holding fixed Rs
u, and given Assumption 2), then we have

U(Rs
ℓ,R

s
u,γ(Ω(Rs

ℓ,R
s
u)))≥U(Rℓ,Rs

u,γ(Ω(Rℓ,Rs
u))≥U(Rℓ,Rs

u,γ(Ω(Rs
ℓ,R

s
u))) ∀Rℓ < Rs

ℓ

so that banks prefer Rℓ = Rs
ℓ to Rℓ < Rs

ℓ at price γs.

Thus, Rℓ = Rs
u is optimal for banks, concluding the proof.

A.10 Proof of Proposition 6

The proof of the first part follows by parallel arguments to the proof of Proposition 4. Consider debt

levels (Rℓ,Ru) that violates equation (29), and let L(R1) be the promised repayments associated

with these debt levels. Since equation (29) is violated, all banks are bailed out ex post, and

a bank with return R1 ≤ Rℓ receives a bailout of size T (R1) = L(R1)− (1− b)R1Y0, has bank

consumption c(R1) = bR1Y0, and has investor repayment x(R1) = L(R1) = (1−b)R1Y0 +T1(R1) =

x̂(R1)+T1(R1), where x̂(R1) is repayment out of bank resources. Substituting into the participation

constraint, we have

Y0 −A0 −E[T1(R1)|e0 = e∗0]+T0 ≤ E[x̂(R1)|e0 = e∗0].

writing T̂0 = T0 −E[T1(R1)|e0 = e∗0], this then reduces to

Y0 −A0 + T̂0 ≤ E[x̂(R1)|e0 = e∗0].

The problem is otherwise identical. Hence, from the perspective of bank welfare (ignoring fixed

costs), the debt levels (Rℓ,Ru), bailouts T1(R1), and transfer T0 are welfare-equivalent to instead

setting debt levels (0,Ru), having no bailouts, and implementing a lump-sum transfer of T̂0 from

taxpayers to the bank at date 0. Because bailouts have a fixed cost F ≥ 0, choosing debt levels

(Rℓ,Ru) with bailouts is therefore welfare-reducing relative to the no-bailouts debt levels (0,Ru).

Thus, each point on the Pareto frontier is characterized by a debt level (Rs
ℓ,R

s
u) that satisfies equation

29, but is associated with different distributions of ex ante resources between banks and taxpayers

(represented by the transfer T0). To select the point on the Pareto frontier associated with the existing

distribution of resources, we need merely to characterize the Pareto weight that equalizes marginal

utility and so rule out desirability of the lump sum transfer. As in Proposition 4, this is ωT = λ s.

This proves part (a).

Part (b) is immediate from implementability. Since an increase in F relaxes the no-bailouts

constraint (equation 29), the optimal no-bailout contract (Rs
ℓ(F),Rs

ℓ(F)) at fixed cost F can always

be implemented at any higher bailout fixed cost F ′ ≥ F . This holds for any point on the Pareto
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frontier, concluding the proof.

B Extensions

Appendix B.1 allows for positive arbitrageur welfare weights. Appendix B.2 studies the trade-off

between bailouts and bail-ins in protecting insured deposits when banks are allowed to issue insured

deposits as part of their standard debt. Appendix B.3 provides additional results described in text

under linear private benefits of effort.

B.1 Pareto Efficiency

We now study Pareto efficient social contracts, accounting for positive welfare weight ωA on

arbitrageurs. Recall that we have assumed that u′(A)> 1. We obtain the following result.

Proposition 7. The socially optimal contract is as in Proposition 3, but with wedges

τ
s
ℓ =

(
1− 1−Λ1(Rs

ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

bLs
)

λ
s
ω

s
σγ

s ≥ 0

τ
s
u =

F1L(Rs
u)−F1H(Rs

u)

|B′′
0(e

∗
0)|

Ls
λ

s
ω

s
σγ

s

where ωs = 1− 1
u′(A−A0)

> 0.

Pareto efficient improvements arise because arbitrageurs are borrowing constrained, so that their

marginal utility at date 0 exceeds that at date 1 (i.e., there is a distributive externality). Efficiency is

achieved by transfering resources to arbitrageurs at date 0 in order to compensate them for resource

losses from lower surplus from bank liquidations. When we take ωA → 0, the associated point on

the Pareto frontier is A0 → A and u′(A−A0)→ +∞, and we obtain the first order conditions of

Proposition 3.

B.1.1 Proof of Proposition 7

We can characterize a Pareto efficient contract by adopting the welfare function

E [c|e0 = e∗0]+B0(e∗0)Y0 +ω
A [u(A−A0

)
+(F (Ω)− γ(Ω)Ω)Y0

]
,

where ωA is the welfare weight on arbitrageurs. The optimality of standard and bail-in debt follows

the same steps as in the proofs of Propositions 1 and 3. However, observe there is an additional
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spillover from an increase in aggregate liquidations onto arbitageur utility,

dωA [u(A−A0
)
+(F (Ω)− γ(Ω)Ω)Y0

]
dΩ

=−ω
A dγ

dΩ
ΩY0 = ω

A
γσY0

Thus we obtain the wedges

τ
s
ℓ =

(
1− 1−Λ1(Rs

ℓ)

(1− e∗0)+ e∗0Λ1(Rs
ℓ)

1
|B′′

0(e
∗
0)|

bLs
)
(λ s −ω

A)σγ
s

τ
s
u =

F1L(Rs
u)−F1H(Rs

u)

|B′′
0(e

∗
0)|

Ls(λ s −ω
A)σγ

s

which accounts for the modified social cost of liquidations. Finally, the optimality condition for A0

is given by λ s = ωAu′(A−A0). Substituting in completes the proof.

B.2 Safety Premia and Insured Deposits

In this appendix, we study the interaction between our unobservable effort model and a safety

premium story. This synergizes well with the observation that protecting insured deposits is another

goal of bail-in regimes. It also allows us to shed further light on bail-ins versus bailouts as means of

protecting insured deposits.

To streamline the model, we assume there are no fire sales (fixed γ) and that there is a linear

private benefit to effort, B0(e0) = B0 · (1− e0).

There are special depositors who place an excess value β > 0 on a completely safe bank deposit

at date 0, that is they are willing to pay 1+β for a safe deposit. At date 1, special depositors will

withdraw their funds and be replaced by regular investors if rollover occurs. The number of special

depositors that show up to a given bank is (1−b)RdY0 for a fixed Rd > R. We thus abstract away

from the optimal level Rd and focus on the residual capital structure and how the planner protects

special depositors. We assume that the planner extends deposit insurance to special depositors, so

that banks can treat special deposits as completely safe. The bank is always unable to repay its

liabilities and meet its minimum agency rent if R1 < Rd , absent intervention, regardless of its other

liabilities. Because deposits are insured, the planner is liable for any shortfall relative to the face

value (1−b)RdY0. Insured deposits are always at the top of the creditor hierarchy in liquidation.60

The planner chooses bailouts with commitment. Bailouts have a constant variable cost τ > 0.

Thus a bailout that recapitalizes a distressed bank costs

CostNo Liquidation = τ (L(R1)− (1−b)R1Y0)

60In practice, banks may issue wholesale funding which is not insured but runs prior to resolution.
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where L(R1) is total liabilities including insured deposits. When the planner instead allows the bank

to fail, insured deposits receive the entire liquidation value and are covered by deposit insurance, so

that the cost in taxpayer funds is

CostLiquidation = min{τ ((1−b)RdY0 − γR1Y0) ,0}

Note that even when L(R1) = (1−b)RdY0 and there are only insured deposits remaining, the cost

of rescuing the bank with a bailout is lower than the cost of rescuing the bank under liquidation,

due to the loss of pledgeable income in liquidation.

The planner solves for the optimal contract, which includes the rescue decision (either via

bailout or via liquidation and repayment by insurance).61 We constrain bank consumption to be

monotone, that is c(R1) must be nondecreasing in R1,62 which was satisfied by optimal contracts

in the baseline model. This implies that bailouts must be monotone: if a bank with return R1 is

bailed out, then all banks R′
1 ≥ R1 must also be bailed out. This rules out the possibility that the

planner bails out a bank with R1 < Rd to protect depositors but liquidates a bank with R1 >
1−b

γ
Rd

for incentive reasons.

Proposition 8. The socially optimal contract consists of insured deposits Rd , standard (uninsured)

debt Rs
ℓ ≥ Rd , and bail-in debt Rs

u ≥ Rs
ℓ. The following are true:

1. If Rs
ℓ > Rd , there is deposit insurance but no bailouts. The bank is liquidated when R1 ≤ Rs

ℓ.

2. If Rs
ℓ = Rd , there is a threshold Rs

L ≤ Rd such that the bank is liquidated when R1 ≤ Rs
L and

bailed out when Rs
L ≤ R1 ≤ Rd .

Proposition 8 illustrates the capital structure decision and method of protecting insured deposits. If

Rs
ℓ > Rd , the optimal contract combines insured deposits and uninsured deposits. Intuitively, this

will tend to occur when liquidation costs γ and bailout costs τ are not too high. If these costs are

high, then Rs
ℓ = Rd and there are only insured deposits. This arises due to the trade-off between

deposit insurance and bailouts for protecting special depositors. Bailing out the bank reduces the

taxpayer cost of deposit insurance, but provides worse incentives for the bank. Whenever the

planner allows use of standard debt in excess of insured deposits, that is Rs
ℓ > Rd , then necessarily

the planner will commit to rescue depositors but not the bank. In this case, there is deposit insurance

but no bailouts. If Rs
ℓ = Rd and Rs

L < Rd , the planner uses bailouts ex post in order to reduce the

cost of protecting depositors. Interestingly, this is a case where special depositors play both roles.
61A technical aside is that it is possible that the planner does not find it optimal to allow the bank to scale up as

much as possible due to the cost of insuring deposits. We assume this is not the case, for example if Rd is close to R.
62If c(R1)> c(R′

1) but R1 < R′
1, the bank could increase its payoff ex post by destroying assets to bring its return

down to R1. We look for contracts where value destruction is not ex post optimal.
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B.2.1 Proof of Proposition 8

Due to consumption monotonicity, there is a threshold Rs
L ≥ R for bank liquidation, with RL = R

corresponding to no liquidations. As in the proof of Proposition 4, there are no bailouts above Rd ,

due to the taxpayer burden. We can thus split the problem into two parts.

First, suppose that the liquidation threshold satisfies Rs
L > Rd , and suppose that the planner

finds it optimal to engage in bailouts in a states R1 < Rd . By consumption monotonicity, there are

also bailouts for Rd ≤ R1 ≤ Rs
L. But then because transfers to regular investors are inefficient, it is

optimal to set Rs
L = Rd , as in the proof of Proposition 4. The optimal contract does not feature both

Rs
L > Rd and bailouts. Consider then the form of the optimal contract when Rs

L > Rd . Because there

are no bailouts and because we have linear private benefits, we have a corner solution e∗0 = 1 and

the social objective function is∫
c(R1) f1H(R1)dR1 −

∫
R1≤Rs

L

τ max{(1−b)Rd − γR1,0}Y0 f1H(R1)dR1

while the corresponding investor participation constraint is

Y0−A0 = β (1−b)RdY0+
∫ Rs

L

R
max{(1−b)Rd,γR1}Y0 f1H(R1)dR1+

∫
R1≥Rs

L

((1−b)Rd + x(R1)) f1H(R1)dR1

where x is repayment to regular investors, and where incentive compatibility is the same as in the

baseline model. From here, note that the trade-off in liability structure above Rs
L is the same as in

the baseline model. The model again combines standard and bail-in debt, as in the baseline model.

Consider next the optimal contract when Rs
L < Rd . Rs

L then also corresponds to the bailout

threshold, such that there are bailouts when Rs
L ≤ R1 ≤ Rd , and where Rs

L = Rd corresponds to no

bailouts. The resulting social objective function is

∫
c(R1) f1H(R1)dR1−

∫ Rs
L

R
τ [(1−b)Rd − γR1]Y0 f1H(R1)dR1−

∫ Rd

Rs
L

τ(1−b)(Rd −R1)Y0 f1H(R1)dR1

while investor repayment is given by

Y0 −A = (1+β )(1−b)RdY0 +
∫ R

Rd

x(R1) f1H(R1)dR1

reflecting that depositors are always repaid. Finally, incentive compatibility is as in the baseline

model. Thus while optimal contracts combine standard and bail-in debt, we necessarily have

Rs
ℓ = Rd .
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B.3 Additional Results with Linear Private Benefit

In this Appendix, we provide additional results referenced in main text for the case with linear

private benefit of effort at date 0, B0(e0) = b0(1− e0).

Standard and Total Leverage Decrease in Liquidation Discount. The following result shows

that in the private optimum, both standard and total debt increase in the liquidation price, potentially

helping to understand the relatively low leverage and high resolvability of nonfinancials.63

Corollary 3. With linear private benefit of effort, then Rp
ℓ and Rp

u are increasing in γ .

Social Optimum Features Less Standard and Total Debt. We obtain the following corollary to

Proposition 3.

Corollary 4. With linear private benefit of effort, then Rs
ℓ ≤ Rp

ℓ and Rs
u ≤ Rp

u , that is the social

optimum features less standard debt and less total debt than the private optimum.

B.3.1 Proof of Corollary 3

In the case where B0(e0) = (1− e0)b0, equation (12) implies a corner solution in effort at e∗0 = 1.

Since equation (12) binds64, we can use equation (12) to determine the function Ru(Rℓ) implicitly

as solving

b0 =
∫ Ru(Rℓ)

Rℓ

bR1(1−Λ
−1
1 (R1)) f1H(R1)dR1+

∫ R

Ru(Rℓ)
[R1−(1−b)Ru(Rℓ)](1−Λ

−1
1 (R1)) f1H(R1)dR1.

In the relevant region, we then have ∂Ru
∂Rℓ

= bRℓ(Λ1(Rℓ)
−1−1) f1H(Rℓ)

(1−b)
∫ R

Ru(1−Λ
−1
1 ) f1HdR1

≥ 0. Now, we can substitute

in Ru(Rℓ) and the participation constraint into the bank’s objective function to obtain the bank’s

objective over Rℓ and the parameter γ ,

U(Rℓ,γ)=

∫ Ru(Rℓ)
Rℓ

bR1 f1H(R1)dR1 +
∫ R

Ru(Rℓ)
[R1 − (1−b)Ru(Rℓ)] f1H(R1)dR1

1− ∫ Rℓ
R γR1 f1H(R1)dR1 −

∫ Ru(Rℓ)
Rℓ

(1−b)R1 f1H(R1)dR1 −
∫ R

Ru(Rℓ)
(1−b)Ru(Rℓ) f1H(R1)dR1

A0

63Formally to undertake variations in γ , we assume that arbitrageurs have a linear technology, F = γΩ, and vary
the slope of the linear technology.

64If the corner solution were strict and the RHS of equation (12) exceeded the LHS, then the bank could borrow an
extra unit from investors while pledging a sufficient increase in bail-in debt to ensure it is repaid. Such a perturbation
would be incentive compatible and hence optimal given the project is positive NPV.
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Taking logs, the log objective function is

logU(Rℓ,γ) = log
(∫ Ru(Rℓ)

Rℓ
bR1 f1H(R1)dR1 +

∫ R
Ru(Rℓ)

[R1 − (1−b)Ru(Rℓ)] f1H(R1)dR1

)
+ logA0

− log
(

1− ∫ Rℓ
R γR1 f1H(R1)dR1 −

∫ Ru(Rℓ)
Rℓ

(1−b)R1 f1H(R1)dR1

−∫ R
Ru(Rℓ)

(1−b)Ru(Rℓ) f1H(R1)dR1

)
From here, the proof strategy is to show that logU has increasing differences in (Rℓ,γ) over

the relevant range Rℓ ∈ [R,Rℓ], where Rℓ is defined implicitly by Λ1(Rℓ) = 1. Having verified

increasing differences, we can invoke standard monotone comparative statics to conclude that Rℓ(γ)

is increasing in γ . Since Ru(Rℓ) is an increasing function, then Ru is also increasing in γ .

Let us define

X(Rℓ,γ)=
∫ Rℓ

R
γR1 f1H(R1)dR1+

∫ Ru(Rℓ)

Rℓ

(1−b)R1 f1H(R1)dR1+
∫ R

Ru(Rℓ)
(1−b)Ru(Rℓ) f1H(R1)dR1

Differentiating logU in γ , we have

∂ logU
∂γ

=

∂X(Rℓ,γ)
∂γ

1−X(Rℓ,γ)

Differentiating again in Rℓ, we have

∂ 2 logU
∂γ∂Rℓ

=

∂ 2X(Rℓ,γ)
∂γ∂Rℓ

(1−X(Rℓ,γ))+
∂X
∂Rℓ

∂X(Rℓ,γ)
∂γ

(1−X(Rℓ,γ))2

As we aim to show increasing differences, the strategy from here is to show ∂ 2X(Rℓ,γ)
∂γ∂Rℓ

(1−X(Rℓ,γ))+

∂X
∂Rℓ

∂X(Rℓ,γ)
∂γ

≥ 0. Evaluating the corresponding derivatives, we have

∂X
∂γ

=
∫ Rℓ

R
R1 f1H(R1)dR1

∂ 2X
∂γ∂Rℓ

= Rℓ f1H(Rℓ)

∂X
∂Rℓ

= (γ +b−1)Rℓ f1H(Rℓ)+
∫ R

Ru(Rℓ)
(1−b)

∂Ru(Rℓ)

∂Rℓ
f1H(R1)dR1 ≥ (γ +b−1)Rℓ f1H(Rℓ)
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where the inequality follows from ∂Ru
∂Rℓ

≥ 0. So then, we have

∂ 2X
∂γ∂Rℓ

(1−X)+ ∂X
∂Rℓ

∂X
∂γ

≥ Rℓ f1H(Rℓ)(1−X(Rℓ,γ))+(γ +b−1)Rℓ f1,H(Rℓ)
∫ Rℓ

R R1 f1H(R1)dR1

= Rℓ f1H(Rℓ)

[
1−X(Rℓ,γ)− (1−b− γ)

∫ Rℓ
R R1 f1H(R1)dR1

]
= Rℓ f1H(Rℓ)

[
1−X(Rℓ,1−b)

]
≥ Rℓ f1H(Rℓ)

[
1− (1−b)E[R1|e∗0 = 1]

]
≥ Rℓ f1H(Rℓ)

[
1− (1−B1)E[R1|e∗0 = 1]

]
≥ 0

where the last line follows from Assumption 2(b). Thus we have verified increasing differences,

concluding the proof.

B.3.2 Proof of Corollary 4

Following the same steps as the proof of Corollary 3, we have

U(Rℓ,γ)=

∫ Ru(Rℓ)
Rℓ

bR1 f1H(R1)dR1 +
∫ R

Ru(Rℓ)
[R1 − (1−b)Ru(Rℓ)] f1H(R1)dR1

1− ∫ Rℓ
R γR1 f1H(R1)dR1 −

∫ Ru(Rℓ)
Rℓ

(1−b)R1 f1H(R1)dR1 −
∫ R

Ru(Rℓ)
(1−b)Ru(Rℓ) f1H(R1)dR1

A0.

As usual, we can define γ as a decreasing function of Rℓ (this follows immediately given effort is

constant at 1).

To clarify notation, let Rp
ℓ be the privately optimal choice of Rℓ and γ p = γ(Rp

ℓ ), then by bank

optimization

U(Rp
ℓ ,γ

p)≥U(Rℓ,γ
p) ∀Rℓ

Now, consider the social planner’s problem,

Rs
ℓ ∈ argmax

Rℓ

U(Rℓ,γ(Rℓ)).

Since γ is a decreasing function of Rℓ and U is an increasing function of γ , then

U(Rp
ℓ ,γ

p)≥U(Rℓ,γ
p)≥U(Rℓ,γ(Rℓ)) ∀Rℓ ≥ Rp

ℓ

Therefore, Rs
ℓ ≤ Rp

ℓ . Finally since, as in the proof of Corollary 3, Ru(Rℓ) is an increasing function,

then Rs
u ≤ Rp

u . This concludes the proof.
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