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Abstract

This paper introduces an exact decomposition of welfare assessments for general dynamic
stochastic economies with heterogeneous individuals into four distinct components: i) aggregate
efficiency, ii) intertemporal-sharing, iii) risk-sharing, and iv) redistribution. For welfarist planners,
the decomposition is based on constructing individual, dynamic, and stochastic weights that
characterize how a planner makes tradeoffs across individuals, dates, and histories. For DS-
planners, such weights are defined as a primitive of the welfare assessment, which allows for a
systematic formalization of new welfare criteria based on the decomposition. Three applications
illustrate the value of the decomposition to address substantive issues in welfare analysis.
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1 Introduction

Assessing the aggregate welfare impact of policies or shocks in dynamic stochastic economies with
heterogeneous individuals and imperfect financial markets is far from trivial. In particular, it
is challenging to identify the specific normative considerations that underlie a particular welfare
assessment. This paper tackles this challenge by developing a decomposition of welfare assessments
that is based on individual, dynamic, and stochastic weights and satisfies desirable properties.

We introduce our results in a canonical dynamic stochastic environment in which heterogeneous
individuals consume a single good and supply a single factor (labor) at each history. We initially
consider welfare assessments for welfarist planners — those who use a Social Welfare Function. Since
comparisons in utils are meaningless — due to the ordinal nature of individual utilities — we first
express welfare assessments in terms of normalized individual, dynamic, and stochastic weights, which
allow us to interpret how welfarist planners make tradeoffs across individuals, dates, and histories in
common units. To define such units, we select welfare numeraires.

After expressing welfare assessments in comparable units, we show how to decompose a welfare
assessment into i) an efficiency component and ii) a redistribution component, as illustrated by
Figure 1. The efficiency component exactly corresponds to Kaldor-Hicks efficiency: it is the sum of
individual willingness-to-pay for the perturbation in units of the lifetime welfare numeraire. Kaldor-
Hicks efficiency is typically justified on the grounds of the compensation principle (Boadway and
Bruce, 1984). That is, whenever the efficiency component is positive, the winners of the perturbation
could hypothetically compensate the losers. For a given lifetime welfare numeraire, this is the unique
decomposition in which a normalized welfare assessment can be expressed as the (unweighted) sum
of individual willingness-to-pay (efficiency) and its complement (redistribution). The redistribution
component, which captures the equity concerns embedded in a particular Social Welfare Function,
is positive when those individuals relatively favored in a perturbation are those relatively preferred
by the planner, i.e., have higher normalized individual weights.

We establish three properties of the efficiency/redistribution decomposition. First, the efficiency
component is identical for all welfarist planners, which implies that all differences in the assessments
of welfarist planners are due to redistribution considerations. Second, the efficiency component
is invariant to preference-preserving utility transformations, which implies that the impact of
preference-preserving utility transformations on welfare assessments is exclusively confined to the
redistribution component. Third, the efficiency component is strictly positive for (strict or weak)
Pareto-improving perturbations, which guarantees that the efficiency component of the welfare
assessment of any feasible perturbation must be negative at Pareto efficient allocations.

By appealing once again to the compensation principle — now at each date and history —
we decompose efficiency gains into a component that captures changes in aggregate instantaneous
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Figure 1: Welfare Assessment Decomposition

Note: This figure illustrates the decomposition of welfare assessments introduced in this paper. See Propositions 1
and 3 for formal definitions of each of the components and Propositions 2, 3, 5, and 6 for properties.

welfare gains (aggregate efficiency) and two components that capture the differential impact of a
perturbation towards individuals with different valuations across dates (intertemporal-sharing) and
histories (risk-sharing). For given welfare numeraires, this is the unique decomposition in which the
efficiency component can be expressed as the discounted sum — using aggregate time and stochastic
discount factors — of aggregate instantaneous welfare gains, and its complement.

The differences in individual valuations across dates and histories that govern the risk-sharing
and intertemporal-sharing components depend on the extent to which individuals can freely smooth
consumption (in general, the instantaneous welfare numeraire) intertemporally and across histories.
We hence show that i) the risk-sharing and intertemporal-sharing components are zero when marginal
rates of substitution across all dates and histories are equalized across individuals — a condition that
complete markets economies satisfy — and ii) the intertemporal-sharing component is zero when
marginal rates of substitution across dates are equalized across individuals — a condition satisfied
when all individuals can frictionlessly borrow and save.

More generally, we identify conditions on i) normalized weights and ii) welfare gains that
guarantee that the risk-sharing, intertemporal-sharing, or redistribution components are zero.
Intuitively, normalized weights and welfare gains must vary cross-sectionally along the relevant
dimensions for these three components to be non-zero. We also identify particular economies of
practical relevance in which specific components of the welfare decomposition are zero. We show
that i) single individual economies exclusively feature aggregate efficiency, ii) risk-sharing is zero
in perfect foresight economies, iii) intertemporal-sharing and redistribution are zero in economies
with ex-ante (but not necessarily ex-post) identical individuals, iv) risk- and intertemporal-sharing
are zero in static economies, v) aggregate efficiency is zero in single good endowment economies in
which the aggregate endowment is fixed. We also characterize which particular components of the
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welfare decomposition are zero when planners can costlessly transfer resources among individuals
along particular dimensions.

Next, we leverage the welfare decomposition to systematically construct non-welfarist welfare
criteria based on individual, dynamic, and stochastic weights. Unlike the welfarist approach —
which takes a Social Welfare Function as primitive — welfare assessments by DS-planners are
defined in marginal form, which allows us to define normative criteria that the welfarist approach
cannot capture. For example, this approach allows us to formalize welfare objectives that isolate
specific normative considerations while disregarding others. A central result of this section is
a characterization of the properties of the three pseudo-welfarist planners we define: aggregate
efficiency (AE), aggregate efficiency/risk-sharing (AR), and no-redistribution (NR) pseudo-welfarist
DS-planners. These pseudo-welfarist planners are constructed so that specific (sums of) components
of the welfare decomposition for a given welfarist planner can be interpreted as welfare assessments
for particular DS-planners.

Section 5 briefly summarizes extensions and additional results covered in the Online Appendix.
There, we describe how to extend our results to more general environments, and how to further
decompose the components of the welfare decomposition, among other results.

At last, we illustrate how the welfare decomposition introduced in this paper can be used to draw
normative conclusions in three applications of practical relevance. Our first application analyzes the
welfare effects of a transfer policy that smooths consumption across individuals who face idiosyncratic
consumption risk. The central takeaway is that the persistence of the endowment process determines
whether welfare gains are attributed to risk-sharing, intertemporal-sharing, or redistribution, even
when welfare assessments may be invariant to such persistence. Our results also highlight that a
flat term structure of welfare assessments may mask substantial variation on each of its components,
with backloaded risk-sharing gains and frontloaded intertemporal-sharing and redistribution gains
that turn into losses in the long run.

Our second application contrasts the welfare effects of (linear) labor income taxes in two settings:
i) a deterministic environment in which individuals differ in their productivity at the time of the
welfare assessment, and ii) a stochastic environment in which individuals are identical at the time
of the welfare assessment, but experience different shocks. In both environments, increasing tax
rates causes aggregate efficiency losses by distorting labor supply. While both environments can be
parameterized to yield a quantitatively identical optimal tax, a utilitarian planner attributes the
welfare gains from the tax to redistribution in the deterministic environment and to risk-sharing in
the stochastic environment. Moreover, in the stochastic environment all welfarist planners agree on
the magnitude of the optimal tax, which is Pareto-improving in that case, while in the deterministic
environment the optimal tax is sensitive to the choice of welfare function. This application also
illustrates that perturbations may yield efficiency gains even though aggregate consumption falls at
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all times.
Our third application studies the welfare implications of a change in credit conditions in an

economy in which borrowing-constrained individuals make an investment decision. Considering
changes in the borrowing limit in this economy is a tractable perturbation that parameterizes changes
in the degree of market completeness. This application illustrates how relaxing a borrowing constraint
can feature at the same time i) positive aggregate efficiency and intertemporal-sharing components,
by allowing investors to invest more and by reallocating resources towards borrowing-constrained
individuals, and ii) a negative risk-sharing component, since investors end up bearing higher risk
by virtue of their increased investment. This application also illustrates how the redistributive
implications of a change in credit conditions can i) be traced back to pecuniary effects in competitive
economies and ii) vary depending on the level of the borrowing limit.

Related Literature. This paper contributes to several literatures, including those on i)
welfare decompositions, ii) welfare evaluation of policies in dynamic stochastic environments, iii)
interpersonal welfare comparisons, and iv) institutional mandates.

The welfare decomposition introduced in this paper is most related to the work that seeks to
decompose welfare changes in models with heterogeneous agents. The most recent contribution to
this literature is the work by Bhandari et al. (2021), who propose a decomposition of welfare changes
when switching from a given policy to another that can be applied to a larger set of economies than
the earlier contributions of Benabou (2002), Floden (2001), and Seshadri and Yuki (2004), among
others.1 We explain how our decomposition differs from these in Section G.3 of the Online Appendix.

Our results are also related to the consumption-equivalent approach introduced by Lucas (1987),
in particular to its marginal formulation in Alvarez and Jermann (2004). We show that our results
nest the marginal approach to making welfare assessments in representative agent economies of
Alvarez and Jermann (2004) in Section G.2 of the Online Appendix.

The question of how to make interpersonal welfare comparisons to form aggregate welfare
assessments has a long history in economics — see, among many others, Kaldor (1939), Hicks
(1939), Bergson (1938), Samuelson (1947), Harsanyi (1955), Sen (1970) or, more recently, Kaplow
and Shavell (2001), Saez and Stantcheva (2016), Hendren (2020), Schulz, Tsyvinski and Werquin
(2023), and Hendren and Sprung-Keyser (2020). However, perhaps surprisingly, dynamic stochastic
considerations have not been central to this literature. By introducing normalized weights, our
results provide a new characterization of how welfarist planners make tradeoff across individuals,

1Benabou (2002) states that:
“standard social welfare functions (...) cannot distinguish between the effects of policy that operate through
its role as a substitute for missing markets, and those that reflect an implicit equity concern.”

Our results show that it is actually possible to distinguish between the welfare effects of policy that capture the
contribution for missing markets and those that reflect equity concerns when using standard Social Welfare Functions.
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dates, and histories. The introduction of DS-planners in Section 4 generalizes the work of Saez and
Stantcheva (2016) by allowing for welfare criteria based not only on individual generalized weights,
but also dynamic and stochastic generalized weights — see also Section G.1 of the Online Appendix.

Finally, we hope that understanding how DS-planners — introduced in Section 4 — make
welfare assessments opens the door to future disciplined discussions on policy-making mandates. For
instance, while Rogoff (1985) shows that a particular institutional mandate (a conservative central
banker) may be at times desirable in a representative agent framework, our results allow to define
institutional mandates that incorporate or disregard specific cross-sectional considerations, such as
risk-sharing, intertemporal-sharing, or redistribution.

2 Environment

Our notation closely follows that of Ljungqvist and Sargent (2018). We consider an economy
populated by a finite number I ≥ 1 of individuals, indexed by i ∈ I = {1, . . . , I}. At each date
t ∈ {0, . . . , T}, where T ≤ ∞, there is a realization of a stochastic event st ∈ S. We denote the
history of events up to date t by st = (s0, s1, . . . , st), and the probability of observing a particular
sequence of events st by πt

(
st
∣∣ s0
)
. The initial value of s0 is predetermined, so π0

(
s0|s0

)
= 1. At all

dates and histories, individuals consume a single good and supply a single factor, e.g. labor.

Preferences. An individual i derives utility from consumption and (dis)utility from factor supply,
with a lifetime utility representation, starting from s0, given by

V i =
∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
uit

(
cit

(
st
)
, nit

(
st
)

; st
)
, (Preferences) (1)

where cit
(
st
)
and nit

(
st
)
respectively denote the consumption and factor supply of individual i

at history st. uit
(
·; st

)
corresponds to individual i’s instantaneous utility at history st, with

∂uit(st)
∂cit

= ∂uit(cit(st),nit(st);st)
∂cit(st)

> 0 and ∂uit(st)
∂nit

= ∂uit(cit(st),nit(st);st)
∂nit(st)

< 0, and βi ∈ [0, 1) denotes
individual i’s discount factor. We refer to the unit of V i as individual i utils.

Equation (1) corresponds to the time-separable expected utility preferences with exponential
discounting and homogeneous beliefs widely used in macroeconomics and finance, augmented to allow
for time- and history-dependent individual-specific preferences. Section D of the Online Appendix
considers more general environments.

Perturbation. We assume that cit
(
st
)
and nit

(
st
)
are smooth functions of a perturbation parameter

θ ∈ [0, 1], so derivatives such as dcit(st)
dθ and dnit(st)

dθ are well-defined. A perturbation dθ captures
changes in policies or any other primitive in a fully specified model. Typically, the mapping between
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consumption and factor supply, cit
(
st
)
and nit

(
st
)
, and θ — which we take as given — emerges

endogenously and accounts for general equilibrium effects, as we illustrate in our applications.
However, our results do not require to further specify technologies, resource or budget constraints,
equilibrium notions, etc.

Social Welfare Function. Until Section 4, we study welfare assessments for welfarist planners,
that is, planners with a Social Welfare Function (SWF) given by

W =W
(
V 1, . . . , V i, . . . , V I

)
, (Social Welfare Function) (2)

where individual lifetime utilities V i are defined in (1).2 We refer to the units of W as social utils.
In the body of the paper, we assume that ∂W

∂V i
> 0, ∀i. Section D.5 of the Online Appendix allows

for ∂W
∂V i

= 0 for some individuals.
A welfarist planner finds a perturbation dθ desirable (undesirable) if

dW

dθ
=
∑
i

∂W
∂V i

dV i

dθ
> (<) 0.

The welfarist approach is widely used because it is Paretian, that is, it concludes that every Pareto-
improving perturbation is desirable.3 However, because individual utilities are ordinal, understanding
how a welfarist planner makes tradeoffs in comparable units is not straightforward, as we show next.

3 Welfare Assessment Decomposition: Welfarist Planners

In this section, we present the central result of the paper: a decomposition of welfare assessments
for welfarist planners that satisfies desirable properties.

3.1 Normalized Welfare Assessment

In order to introduce the decomposition, it is necessary to understand how a welfarist planner values
welfare gains across individuals, dates, and histories. Since comparisons in utils are meaningless —
due to the ordinal nature of individual utilities — we choose comparable units to express welfare

2As in Boadway and Bruce (1984) or Kaplow (2011), we refer to the use of SWFs — typically traced back to
Bergson (1938) and Samuelson (1947) — as the welfarist approach. As explained in Kaplow (2011), the critical
restriction implied by the welfarist approach is that the social welfare function W (·) cannot depend on any model
outcomes besides individual utility levels. The utilitarian SWF, which adds up a (weighted) sum of individual utilities,
is the most used in practice. See Mas-Colell, Whinston and Green (1995), Kaplow (2011), or Adler and Fleurbaey
(2016) for descriptions of alternative SWFs.

3A perturbation is strictly (weakly) Pareto-improving if every individual i is strictly (weakly) better off after the
policy change. Formally, a policy change is strictly (weakly) Pareto-improving when dV i

dθ
> (≥) 0, ∀i. Even though

Pareto improvements are unambiguously desirable, they are rare, in particular in economies with many individuals.
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gains. We refer to these units as lifetime, date, and instantaneous welfare numeraires. Lemma 1
thus represents welfare assessments in terms of normalized welfare gains and normalized weights.
Normalized welfare gains represent lifetime, date, and instantaneous welfare gains for different
individuals in welfare numeraire units. Normalized weights capture how welfarist planners make
tradeoffs in such common units.

Goods or factors (or bundles of goods or factors) that can be easily transferred across individuals
either privately or by a planner, at least hypothetically, are natural welfare numeraires since they
justify the use of the compensation principle — see Propositions 1 and 3 for applications of this
principle. Therefore, in economies with a single consumption good like the one considered here, it
is natural to aggregate and compare welfare gains in consumption-equivalents. That is, it is natural
to choose a unit of the consumption good as the instantaneous welfare numeraire at each history
(history-st consumption), a unit of the consumption good at all histories at a given date as the
date welfare numeraire at each date (date-t consumption), and a unit of the consumption good
at all dates and histories as the lifetime welfare numeraire (permanent consumption). Hence, to
simplify the exposition, we adopt such consumption-based welfare numeraires in the body of the
paper. Section F.1 of the Online Appendix considers general welfare numeraires.

Given the choice of consumption-based welfare numeraires, Lemma 1 expresses welfare
assessments in terms of the inputs of the components of the welfare decomposition: normalized
lifetime, date, and instantaneous welfare gains, and normalized individual, dynamic, and stochastic
weights. In terms of notation, variables indexed by λ are expressed in the appropriate numeraire.

Lemma 1. (Normalized Welfare Gains and Normalized Weights) A normalized welfare assessment
for a welfarist planner can be represented as

dW λ

dθ
=

dW
dθ

1
I

∑
i
∂W
∂V i

λi
=
∑
i

ωi
dV i|λ

dθ
, (3)

where λi =
∑
t

(
βi
)t∑

st πt
(
st
∣∣ s0
) ∂uit(st)

∂cit
. Here, dV i|λ

dθ , dV
i|λ
t
dθ , and dV

i|λ
t (st)
dθ respectively denote

lifetime, date, and instantaneous welfare gains, given by

dV i|λ

dθ
=
∑
t

ωit
dV

i|λ
t

dθ
(Normalized Lifetime Welfare Gains) (4)

dV
i|λ
t

dθ
=
∑
st

ωit

(
st
) dV i|λ

t

(
st
)

dθ
(Normalized Date Welfare Gains) (5)

dV
i|λ
t

(
st
)

dθ
= dcit

(
st
)

dθ
+

∂uit(st)
∂nit

∂uit(st)
∂cit

dnit
(
st
)

dθ
. (Normalized Instantaneous Welfare Gains) (6)
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And ωi, ωit, and ωit
(
st
)
respectively denote normalized individual, dynamic, and stochastic weights,

given by

ωi =
∂W
∂V i

∑
t

(
βi
)t∑

st πt
(
st
∣∣ s0
) ∂uit(st)

∂cit

1
I

∑
i
∂W
∂V i

∑
t (βi)t

∑
st πt (st| s0) ∂u

i
t(st)
∂cit

(Normalized Individual Weight) (7)

ωit =

(
βi
)t∑

st πt
(
st|s0

) ∂uit(st)
∂cit∑

t (βi)t
∑
st πt (st| s0) ∂u

i
t(st)
∂cit

(Normalized Dynamic Weight) (8)

ωit

(
st
)

=
πt
(
st|s0

) ∂uit(st)
∂cit∑

st πt (st|s0) ∂u
i
t(st)
∂cit

. (Normalized Stochastic Weight) (9)

Normalized lifetime welfare gains for individual i, dV i|λdθ , have the interpretation of i’s willingness-to-
pay for the perturbation in units of the lifetime welfare numeraire (a unit of permanent consumption).
Normalized date welfare gains for individual i at date t, dV

i|λ
t
dθ , correspond to i’s willingness-to-pay

for the perturbation at date t in units of the date welfare numeraire (a unit of date-t consumption).
Normalized instantaneous welfare gains for individual i at history st, dV

i|λ
t (st)
dθ , correspond to i’s

willingness-to-pay for the perturbation at history st in units of the instantaneous welfare numeraire
(a unit of history-st consumption).

Normalized instantaneous welfare gains, dV
i|λ
t (st)
dθ , define a consumption-equivalent at a particular

history, while date and lifetime gains can be interpreted as time- and risk-discounted sums of
instantaneous consumption-equivalents. In fact, Lemma 1 shows that every welfare assessment can
be expressed as a triple weighted sum of instantaneous welfare gains, since

dW λ

dθ
=
∑
i

ωi
∑
t

ωit
∑
st

ωit

(
st
) dV i|λ

t

(
st
)

dθ
.

Dividing dW
dθ by 1

I

∑
i
∂W
∂V i

λi ensures that the normalized welfare assessment dWλ

dθ is expressed in
units of the lifetime welfare numeraire, and that it can be interpreted in terms of a perturbation
that distributes permanent consumption equally. That is, a normalized welfare assessment of, for
instance, dWλ

dθ = 3 is equivalent to a perturbation in which 3 units of permanent consumption are
equally distributed across all individuals. Unnormalized and normalized assessments, dWdθ and dWλ

dθ ,
agree on whether a perturbation is desirable or not.

The normalized individual weight ωi defines how a welfarist planner trades off lifetime welfare
gains across individuals. For instance, if ωi = 1.3, a welfarist planner finds the welfare gain associated
with distributing 1 unit of permanent consumption to individual i equivalent to distributing 1.3 units
of permanent consumption equally across all individuals. Note that normalized individual weights
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average to one, so 1
I

∑
i ω

i = 1.
The normalized dynamic weight ωit defines a marginal rate of substitution between a unit of date

t consumption and a unit of permanent consumption for individual i. For instance, if ωit = 0.1, a
welfarist planner finds the welfare gain associated with distributing 1 unit of date t consumption-
equivalent to individual i equivalent to distributing 0.1 units of permanent consumption to that
individual. Since permanent consumption is a bundle of consumption at all dates, normalized
dynamic weights add up to one, defining a normalized discount factor, so

∑
i ω

i
t = 1, ∀i.

The normalized stochastic weight ωit
(
st
)
defines a marginal rate of substitution between a unit

of history-st consumption and a unit of date t consumption for individual i. For instance, if
ωit
(
st
)

= 0.4, a welfarist planner finds the welfare gain associated with distributing 1 unit of history-
st consumption-equivalent to individual i equivalent to distributing 0.4 units of date-t consumption
to that individual. Normalized stochastic weights add up to one, so

∑
st ω

i
t

(
st
)

= 1, ∀t, ∀i, defining
risk-neutral probabilities.4

Through the lens of Asset Pricing, Lemma 1 implies that every welfare assessment corresponds to
a weighted sum of the values given by I individuals to claims to the instantaneous normalized welfare
gains, dV

i|λ
t (st)
dθ , which play the role of individual-specific payoffs. This is related to but different from

the literature on asset pricing with incomplete markets (Constantinides and Duffie, 1996; Krueger
and Lustig, 2010), which focuses on pricing claims in which payoffs are not individual-specific.

3.2 Efficiency vs. Redistribution

After expressing welfare assessments in comparable units, we first decompose welfare assessments into
i) an efficiency component, which adds up normalized lifetime welfare gains across individuals, and ii)
its complement, a redistribution component, which captures the differential impact of a perturbation
towards those individuals preferred by the welfarist planner. Figure 1 on page 3 illustrates the
decomposition.

Proposition 1. (Efficiency/Redistribution Decomposition) A normalized welfare assessment for a
welfarist planner can be decomposed into efficiency and redistribution components, ΞE and ΞRD, as
follows:

dW λ

dθ
=
∑
i

ωi
dV i|λ

dθ
=

∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE (Efficiency)

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸
ΞRD (Redistribution)

, (10)

where CovΣ
i [·, ·] = I · CovΣ

i [·, ·] denotes a cross-sectional covariance-sum among individuals.

The efficiency component in Proposition 1 exactly corresponds to Kaldor-Hicks efficiency (Kaldor,
4Risk-neutral probabilities are widely used in finance (Duffie, 2001; Cochrane, 2005), while normalized discount

factors are common in the study of repeated games (Fudenberg and Tirole, 1991; Mailath and Samuelson, 2006).
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1939; Hicks, 1939): it is the sum of individual willingness-to-pay for the perturbation in units of
the lifetime welfare numeraire.5 Kaldor-Hicks efficiency is typically justified on the grounds of
the compensation principle (Boadway and Bruce, 1984). That is, whenever ΞE > 0, the winners
of the perturbation could hypothetically compensate the losers in terms of the lifetime welfare
numeraire. For a given lifetime welfare numeraire, Proposition 1 is the unique decomposition in
which a normalized welfare assessment can be expressed as the (unweighted) sum of individual
willingness-to-pay and its complement.

The redistribution component — which can equivalently be expressed as ΞRD =
∑
i

(
ωi − 1

)
dV i|λ

dθ

— captures the equity concerns embedded in a particular Social Welfare Function. ΞRD is positive
when the individuals relatively favored in a perturbation are those relatively preferred by the planner,
i.e., have higher normalized individual weights ωi.

In Proposition 2, we state three properties of the efficiency/redistribution decomposition just
introduced that further justify the choice of labels for each component.

Proposition 2. (Properties of Efficiency/Redistribution Decomposition)

a) (Invariance of efficiency component to SWF) The efficiency component is identical for all
welfarist planners. Differences in welfare assessments among welfarist planners are exclusively
due to the redistribution component.

b) (Invariance of efficiency component to preference-preserving utility transformations) The
efficiency component is invariant to i) monotonically increasing transformations of individuals’
lifetime utilities and ii) positive affine (increasing linear) transformations of individuals’
instantaneous utilities.

c) (Pareto improvements increase efficiency) The efficiency component is strictly positive for
(strict or weak) Pareto-improving perturbations.

Proposition 2a) follows from the fact that normalized lifetime utilities dV i|λ

dθ do not depend on the
choice of SWF ; only the normalized individual weights ωi do. This property implies that welfarist
planners cannot disagree about the efficiency consequences of a perturbation. The reason why
different welfarist planners make different welfare assessments is simply because they use different
normalized individual weights, implying different social preferences for redistribution.

Proposition 2b) follows from the fact that normalized lifetime utilities dV i|λ

dθ — with units
lifetime welfare numeraire

units of θ — do not depend on the choice of individual utility units. This property
implies that even though welfarist planners mechanically overweight welfare gains by individuals
whose lifetime (instantaneous) utility experiences a monotonically increasing (positive affine)

5Proposition 1 implies that welfare assessments based on a SWF are equivalent to relying on Kaldor-Hicks efficiency
with a correction for redistribution.
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transformation (Campbell, 2018) — even though this has no impact on allocations — this
only impacts the redistribution component.6 Hence, the impact of preference-preserving utility
transformations on welfare assessments is exclusively confined to the redistribution component.

Proposition 2c) follows from the fact that the sum of willingness-to-pay for a Pareto-improving
perturbation must be strictly positive, since there are no losers. This property guarantees that
Pareto efficient allocations must satisfy ΞE ≤ 0 for any feasible perturbation. By contrast, ΞRD

can be negative for Pareto-improving perturbations, even though ΞE + ΞRD > 0 in that case since
welfarist planners are Paretian.

3.3 Aggregate Efficiency vs. Risk-Sharing vs. Intertemporal-Sharing

Proposition 1 implies that the efficiency component of a normalized welfare assessment is simply
the sum of discounted individual welfare gains using individual discount factors — captured by
normalized dynamic and stochastic weights. Hence, every decomposition of the efficiency component
necessarily corresponds to a particular grouping of the weighted sum

ΞE =
∑
i

∑
t

∑
st

ωitω
i
t

(
st
) dV i|λ

t

(
st
)

dθ
.

If all individuals value instantaneous welfare gains over time and across histories equally, then
efficiency simply corresponds to the discounted value — using the common discount factor —
of aggregate instantaneous welfare gains

∑
i
dV

i|λ
t (st)
dθ . In general, when individuals have different

valuations, Proposition 3 decomposes efficiency gains into an aggregate efficiency component, which
corresponds to the discounted value of aggregate instantaneous welfare gains

∑
i
dV

i|λ
t (st)
dθ using

a common discount factor, and two components, intertemporal-sharing and risk-sharing, which
respectively capture the differential impact of a perturbation towards individuals with different
valuations over dates or histories.7

Proposition 3. (Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing Decomposition) The
efficiency component of a normalized welfare assessment can be decomposed into aggregate efficiency,

6The invariance to positive affine transformations is only meaningful with expected utility.
7By choosing the term risk-sharing and the (less conventional) term intertemporal-sharing, we seek to highlight

the cross-sectional nature of both components. Terms such as insurance, consumption smoothing, or intertemporal
smoothing do not have such connotation since they could be applied to a single individual.
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risk-sharing, and intertemporal-sharing components, ΞAE, ΞRS, and ΞIS, as follows:

ΞE =
∑
t

ωt
∑
st

ωt
(
st
)∑

i

dV
i|λ
t

(
st
)

dθ︸ ︷︷ ︸
ΞAE (Aggregate Efficiency)

+
∑
t

ωt
∑
st

ωt
(
st
)
CovΣ

i

[
ωit
(
st
)

ωt (st) ,
dV

i|λ
t

(
st
)

dθ

]
︸ ︷︷ ︸

ΞRS (Risk-Sharing)

(11)

+
∑
t

ωtCovΣ
i

[
ωit
ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸
ΞIS (Intertemporal-Sharing)

,

where the averages of normalized weights ωt = 1
I

∑
i ω

i
t and ωt

(
st
)

= 1
I

∑
i ω

i
t

(
st
)
define aggregate

time and stochastic discount factors, and where CovΣ
i [·, ·] = I · CovΣ

i [·, ·] denotes a cross-sectional
covariance-sum among individuals.

The justification for this decomposition is once again based on the compensation principle, now
applied over dates and histories. The sum of normalized date welfare gains at date t,

∑
i
dV

i|λ
t
dθ ,

corresponds to the aggregate willingness-to-pay for the impact of the perturbation at that date in
units of the date welfare numeraire (a unit of date-t consumption). Hence, when

∑
i
dV

i|λ
t
dθ > 0, the

winners of the perturbation at date t could hypothetically compensate the losers in terms of the date
welfare numeraire at that date. The aggregate time discount factor that makes it possible to add up
aggregate gains across different dates, by expressing them in units of the lifetime welfare numeraire,
is ωt = 1

I

∑
i ω

i
t.

Therefore, the unique way to decompose ΞE into a component that corresponds to the discounted
sum — using an aggregate discount factor — of the aggregate willingness-to-pay for the perturbation
at each date and its complement is

ΞE =
∑
i

∑
t

ωit
dV

i|λ
t

dθ
=
∑
t

ωt
∑
i

dV
i|λ
t

dθ︸ ︷︷ ︸
ΞAE+ΞRS

+
∑
t

ωtCovΣ
i

[
ωit
ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸

ΞIS

. (12)

The intertemporal-sharing component — which can equivalently be expressed as ΞIS =∑
t ωt

∑
i

(
ωit
ωt
− 1

)
dV

i|λ
t
dθ — captures the contribution to efficiency due to differences in valuation

over time across individuals. The date-t element of ΞIS is positive when a perturbation relatively
favors individuals with a higher relative valuation (dynamic weight) for date t, and vice versa.

The same logic applies to decomposing aggregate normalized date welfare gains at date t,

∑
i

dV
i|λ
t

dθ
=
∑
i

∑
st

ωit
(
st
) dV i|λt (st)

dθ
=
∑
st

ωt
(
st
)∑

i

dV
i|λ
t (st)
dθ

+
∑
st

ωt
(
st
)
CovΣ

i

[
ωit (st)
ωt (st) ,

dV
i|λ
t (st)
dθ

]
.

The sum of normalized instantaneous welfare gains at history st,
∑
i
dV

i|λ
t (st)
dθ , corresponds to the
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aggregate willingness-to-pay for the impact of the perturbation at that history in units of the
instantaneous welfare numeraire (a unit of history-st consumption). Hence, when

∑
i
dV

i|λ
t (st)
dθ > 0,

the winners of the perturbation at history st could hypothetically compensate the losers in terms of
the instantaneous welfare numeraire at that history. The aggregate stochastic discount factor that
makes it possible to add up aggregate gains across different histories at a given date, by expressing
them in units of the date welfare numeraire, is ωt

(
st
)

= 1
I

∑
i ω

i
t

(
st
)
.

Therefore, Proposition 3 is the unique decomposition in which the efficiency component
can be expressed as the discounted sum — using aggregate time and stochastic discount
factors — of aggregate instantaneous welfare gains, ΞAE , and its complement, ΞRS +
ΞIS . The risk-sharing component — which can equivalently be expressed as ΞRS =∑
t ωt

∑
st ωt

(
st
)∑

i

(
ωit(st)
ωt(st) − 1

)
dV

i|λ
t (st)
dθ — captures the contribution to efficiency due to differences

in valuation over histories across individuals. The history-st element of ΞRS is positive when a
perturbation relatively favors individuals with a higher relative valuation (stochastic weight) for
history st, and vice versa. In Section E of the Appendix, we discuss alternative subdecompositions
for the risk-sharing and intertemporal-sharing components.

By construction, the aggregate efficiency component is exclusively a function of aggregate
instantaneous welfare gains, while the risk-sharing and intertemporal-sharing components depend
on how instantaneous welfare gains accrue to individuals with different valuations for particular
dates or histories. Importantly, for ΞAE to be non-zero, it must be that a perturbation changes
aggregate instantaneous welfare gains at particular dates and histories — see Proposition 4c below.
In Section E of the Appendix, we show how it is possible to subdecompose aggregate efficiency into
a component that captures improved smoothing of aggregate instantaneous welfare gains — this is
the single force behind the cost-of-business-cycles computation in Lucas (1987) — and a component
that captures changes in expected aggregate instantaneous welfare gains.

The differences in individual valuations across dates and histories that govern the risk-sharing
and intertemporal-sharing components depend on the extent to which individuals can freely smooth
consumption (in general, the instantaneous welfare numeraire) intertemporally and across histories.
In Proposition 4, we show that i) risk-sharing and intertemporal-sharing are zero when individual
marginal rates of substitution across all dates and histories are equalized (which occurs when markets
are complete) and ii) intertemporal-sharing is zero when marginal rates of substitution across dates
are equalized across agents (which occurs when all individuals can frictionlessly borrow and save).8

Proposition 4. (Properties of Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing
Decomposition)

8Similar to Proposition 2, each of ΞAE , ΞRS , and ΞIS are identical for all welfarist planners and invariant to
preference-preserving utility transformations.
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a) (Complete markets) When marginal rates of substitution across all dates and histories are
equalized across individuals — a condition that complete markets economies satisfy — the risk-
sharing and intertemporal-sharing components are zero: ΞRS = ΞIS = 0.

b) (Frictionless borrowing and saving) When marginal rates of substitution across dates are
equalized across individuals — a condition satisfied when all individuals can frictionlessly borrow
and save — the intertemporal-sharing component is zero: ΞIS = 0.

c) (Zero aggregate normalized welfare instantaneous gains) When a perturbation features zero
aggregate normalized instantaneous welfare gains at all dates and histories, the aggregate
efficiency component is zero: ΞAE = 0.

Proposition 4a and 4b follow from the fact that complete markets ensure that individual valuations
across dates and histories are identical, while frictionless borrowing and saving do the same exclusively
across dates. Intuitively, normalized dynamic and stochastic weights can be expressed in terms of
state-prices as follows:

ωit

(
st
)

= qit
(
st
)∑

st q
i
t (st)

and ωit =
∑
st q

i
t

(
st
)∑

t

∑
st q

i
t (st)

, (13)

where qit
(
st
)

=
(
βi
)t
πt
(
st
∣∣ s0
) ∂ui(st)

∂cit
/
∂ui(s0)
∂ci0

denotes individual i’s (shadow) date-0 state-price over
history st. When markets are complete, all valuations are equalized, so qit = qt, ∀i, which implies
that ωit = ωt and ωit

(
st
)

= ωt
(
st
)
. Hence, in this case, welfare assessments are exclusively driven

by aggregate efficiency and redistribution. Under frictionless borrowing and saving, the valuation of
zero-coupon bonds is equalized, so

∑
st q

i
t

(
st
)

=
∑
st qt

(
st
)
, which implies that ωit = ωt. Proposition

4 also implies that the good/factor on which financial claims are written (e.g., the consumption good
or, more generally, a nominal numeraire) is the natural instantaneous welfare numeraire. Proposition
4c shows that the aggregate efficiency component can only take non-zero values for perturbations in
which aggregate normalized instantaneous welfare gains are non-zero.

Finally, while Proposition 2c) concludes that the efficiency component is strictly positive for
every Pareto-improving perturbation, one or two of the three components of the decomposition of
the efficiency component introduced in Proposition 3 may be negative. That is, Pareto efficiency
exclusively requires that the sum of the aggregate efficiency, risk-sharing and intertemporal-sharing
components is positive, so ΞE = ΞAE + ΞRS + ΞIS > 0, but not each of them. Application 2 in
Section 6 illustrates this possibility.
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3.4 Additional Properties

In the remainder of this section, we present additional properties of the welfare assessment
decomposition introduced in Propositions 1 and 3.9 Proposition 5 identifies conditions on i)
normalized weights and ii) welfare gains that respectively guarantee that ΞRS , ΞIS , or ΞRD are
zero.

Proposition 5. (Properties of Welfare Decomposition: Individual-Invariant Weights or Welfare
Gains)

a) (Individual-invariant normalized weights) If normalized stochastic weights are constant across
individuals at all dates and histories, then ΞRS = 0. If normalized dynamic weights are constant
across individuals at all dates, then ΞIS = 0. If normalized individual weights are constant
across individuals, then ΞRD = 0.

b) (Individual-invariant welfare gains) If instantaneous welfare gains dV
i|λ
t (st)
dθ are identical across

individuals at all histories, then ΞRS = 0. If risk-adjusted instantaneous welfare gains dV
i|λ
t
dθ

are identical across individual at all dates, then ΞIS = 0. If lifetime welfare gains are identical
across individuals, then ΞRD = 0.

Proposition 5a) shows that invariance of normalized weights across specific dimensions —
individual, dynamic, stochastic — implies that redistribution, intertemporal-sharing, and risk-
sharing components are respectively zero. This result highlights the cross-sectional nature of
these three components, in contrast to aggregate efficiency. Proposition 5b) shows that particular
components of the welfare assessment decomposition are zero when perturbations impact all
individuals identically at each history, date, or on a lifetime basis.

Proposition 6 identifies which components of the welfare decomposition are zero in particular
economies of practical relevance. This result further justifies the labels for the different components
of the decomposition and is useful to quickly conclude which components of the decomposition are
inactive in specific applications.

Proposition 6. (Properties of Welfare Decomposition: Particular Economies)

a) (Single individual economies) In single individual (I = 1) economies: ΞRS = ΞIS = ΞRD = 0.

b) (Perfect foresight economies) In perfect foresight economies: ΞRS = 0.
9Lemma 1 already implies that normalized individual, dynamic, and stochastic weights and normalized instantaneous

welfare gains are sufficient statistics to make normalized welfare assessments. These are also the components of the
welfare assessment decomposition introduced in Propositions 2 and 4, which makes computing the decomposition
conceptually straightforward.
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c) (Economies with ex-ante identical individuals) In economies with ex-ante (but not necessarily
ex-post) identical individuals: ΞIS = ΞRD = 0.

d) (Static economies) In static (T = 0) economies: ΞRS = ΞIS = 0.

e) (Single good endowment economies) In single good endowment economies in which the aggregate
endowment is invariant to the perturbation: ΞAE = 0.

Even though the welfare decomposition is based on the compensation principle, which is
formulated in terms of hypothetical transfers between winners and losers, no transfers of resources
need to take place for the decomposition to be valid. The decomposition is simply a valuation
exercise. That said, in economies in which planners can (and do) costlessly transfer resources among
individuals along particular dimensions, Proposition 7 characterizes which components of the welfare
decomposition are zero.

Proposition 7. (Properties of Welfare Decomposition: Transfers)

a) (Lifetime transfers) If a planner can costlessly transfer the lifetime welfare numeraire across
individuals, then ΞRD = 0.

b) (Date transfers) If a planner can costlessly transfer the date welfare numeraire across
individuals at all dates, then ΞIS = ΞRD = 0.

c) (Instantaneous transfers) If a planner can costlessly transfer the instantaneous welfare
numeraire across individuals at all histories, then ΞRS = ΞIS = ΞRD = 0.

We conclude this section with the following remark.

Remark 1. (Welfare decomposition does not rely on optimality) It is worth highlighting that the
decomposition of welfare assessments introduced in Propositions 1 and 3 does not rely on individual
optimality (i.e., the envelope theorem). The decomposition is exclusively a function of preferences
and the considered perturbation. In specific applications, exploiting individual optimality conditions,
along with budget and resource constraints, can simplify the characterization of components of the
decomposition, as the applications in Section 6 illustrate.

4 Welfare Assessment Decomposition: DS-planners

In this section, we leverage the welfare decomposition to systematically construct non-welfarist
welfare criteria based on individual, dynamic, and stochastic weights. This approach allows us to
formalize normative objectives that isolate specific components of the welfare decomposition. Because
this normative approach entails defining weights for each time and history, for each individual, we say
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it is based on Dynamic Stochastic Generalized Social Marginal Welfare Weights (dynamic–stochastic
weights or DS-weights, for short). These results have the potential to allow for disciplined discussions
about the mandates of independent technocratic institutions (central banks, financial regulators,
other regulatory agencies, etc.).

DS-planners: Definition. We begin by formally defining desirable perturbations for a planner
who adopts DS-weights, a DS-planner.

Definition. (Desirable perturbation for a DS-planner) A DS-planner finds a perturbation desirable
(undesirable) when dWDS

dθ > (<) 0, where

dWDS

dθ
=
∑
i

ωi
∑
t

ωit
∑
st

ωit

(
st
) dV i|λ

t

(
st
)

dθ
, (14)

where dV
i|λ
t (st)
dθ denotes the instantaneous welfare gains at history st in units of the instantaneous

welfare numeraire, defined in equation (6), and where ωi > 0, ωit > 0, and ωit
(
st
)
> 0 define

individual, dynamic, and stochastic weights that can potentially be functions of outcomes.

Since dV
i|λ
t (st)
dθ is expressed in units of the instantaneous welfare numeraire and because we require

that
∑
st ω

i
t

(
st
)

= 1, the stochastic weight ωit
(
st
)
defines a marginal rate of substitution between a

unit of instantaneous welfare numeraire at history st and a unit of instantaneous welfare numeraire
across all date t histories for individual i, as in the welfarist case. The dynamic weight ωit defines
a marginal rate of substitution between a unit of instantaneous welfare numeraire across all date
t histories and, implicitly, a unit of lifetime welfare numeraire for individual i.10 The individual
weight ωi defines how a DS-planner trades off lifetime welfare gains across individuals. The product
ω̃it
(
st
)

= ωiωitω
i
t

(
st
)
defines a dynamic-stochastic weight for individual i.11

Unlike the welfarist approach — which takes a social welfare function as primitive — welfare
assessments by DS-planners are defined in marginal form. In that sense, DS-planners extend the
generalized weight approach in Saez and Stantcheva (2016) to dynamic stochastic environments.
Formally, while that paper considers welfare objectives that directly define the individual weight
ωi, DS-planners also define (potentially non-welfarist) dynamic and stochastic weights for each

10Any choice of weights in which
∑

t
ωit = 1 and

∑
t
ωit
(
st
)

= 1 ensures that interpersonal comparisons are made
in a common unit (or lifetime welfare numeraire). It is nonetheless possible to make meaningful comparisons when
dynamic weights do not add up to 1 over time, as explained in Section F.1 of the Online Appendix.

11Earlier versions of this paper defined desirable perturbations directly in terms of DS-weights, as in

dWDS

dθ
=
∑
i

∑
t

∑
st

ω̃it
(
st
) dV i|λt (

st
)

dθ
,

subsequently multiplicatively decomposing such weights. Both formulations are equivalent, as explained in the Online
Appendix.

18



individual. The Online Appendix shows how to equivalently define DS-planners in terms of
instantaneous social welfare functions with generalized (endogenous) welfare weights and further
relates the results of this section to those in Saez and Stantcheva (2016).

DS-planners can be useful to both provide analytical characterizations and to characterize and
compute optimal policies guided by particular components of the welfare decomposition introduced
in this paper. Lemma 1 trivially implies that every welfarist planner is a DS-planner, while the
converse is not true, as we illustrate next.

AE/AR/NR Pseudo-welfarist DS-planners. Starting from equation (14), it is evident that
welfare assessments for DS-planners can be decomposed into ΞAE , ΞRS , ΞIS , and ΞRD components,
using the same definitions introduced in (10) and (11). Moreover, Proposition 5a) implies that it
is possible to construct welfare objectives in which ΞRD = 0, ΞIS = 0, or ΞRS = 0 by choosing
individual, dynamic, or stochastic weights that are invariant across individuals.

While in Section B of the Online Appendix we discuss other DS-planners, here we focus on
pseudo-welfarist DS-planners. These planners justify using particular components of the welfare
decomposition of a welfarist planner as the welfare assessment of a particular DS-planner by making
individual, dynamic, and/or stochastic weights equal to their cross-sectional welfarist average.

Definition. (Pseudo-welfarist AE/AR/NR DS-planners) AE (aggregate efficiency), AR (aggregate
efficiency/risk-sharing), and NR (no-redistribution) pseudo-welfarist DS-planners are characterized
by the normalized weights:

ωi,AE = 1, ωi,AEt = ωWt , and ωi,AEt

(
st
)

= ωWt

(
st
)

AE Planner (15)

ωi,AR = 1, ωi,ARt = ωWt , and ωi,ARt

(
st
)

= ωi,Wt

(
st
)

AR Planner (16)

ωi,NR = 1, ωi,NRt = ωi,Wt , and ωi,NRt

(
st
)

= ωi,Wt

(
st
)

NR Planner (17)

where ωi,Wt and ωi,Wt
(
st
)
are dynamic and stochastic weights for the welfarist planner with SWF

W (·), and where ωWt = 1
I

∑
i ω

i,W
t and ωWt

(
st
)

= 1
I

∑
i ω

i,W
t

(
st
)
are their cross-sectional averages.

Pseudo-welfarist planners are constructed so that specific (sums of) components of the welfare
decomposition for a given welfarist planner can be interpreted as welfare assessments for particular
DS-planners, as we formalize in Proposition 8.12

Proposition 8. (Relation between Welfarist Planners and Pseudo-welfarist AE/AR/NR DS-
planners)

12The NR pseudo-welfarist planner is equivalent to using a Kaldor-Hicks criterion. This planner is non-welfarist and
non-paternalistic — see Remark 2.
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a) [AE] The aggregate efficiency component ΞAE for a welfarist planner can be interpreted as
the welfare assessment of an AE pseudo-welfarist DS-planner, defined in (15), for whom
ΞRS = ΞIS = ΞRD = 0.

b) [AR] The sum of aggregate efficiency and risk-sharing components ΞAE + ΞRS for a welfarist
planner can be interpreted as the welfare assessment of an AR pseudo-welfarist DS-planner,
defined in (16), for whom ΞIS = ΞRD = 0.

c) [NR] The efficiency component ΞE for a welfarist planner can be interpreted as the welfare
assessment of a NR pseudo-welfarist DS-planner, defined in (17), for whom ΞRD = 0.

We conclude this section with two remarks.

Remark 2. (Paternalistic vs. Non-paternalistic DS-planners) DS-planners with non-welfarist
dynamic and stochastic weights are paternalistic since their welfare assessments are not based on
individual lifetime welfare gains. For instance, those planners may conclude that a perturbation
that individuals find Pareto-improving is undesirable. Similarly, the components of the welfare
decomposition are based on the weights used by the DS-planner, not those reflecting individual
preferences. Therefore, welfare assessments that do not value intertemporal-sharing or risk-sharing
as individuals do will be paternalistic.13 Importantly, the definition of DS-planners in equation
(14) respects individual intratemporal preferences since it uses dV

i|λ
t (st)
dθ as an input for the welfare

assessment, although this could be relaxed.

Remark 3. (Impossibility of defining specific pseudo-welfarist DS-planners) It is not possible to
define pseudo-welfarist DS-planners for whom exclusively the risk-sharing and intertemporal-sharing
components are zero. Ensuring that ΞRS = ΞIS = 0 requires using dynamic and stochastic weights
that are identical across individuals, which would impact ΞRD. A similar logic applies to other
components of the welfare decomposition. It is nonetheless possible to define DS-planners that are
not pseudo-welfarist but that, for instance, exclusively value aggregate efficiency and redistribution,
as we show in Section B of the Online Appendix.

5 Extensions and Additional Results

Sections D, E, and F of the Online Appendix present several extensions and additional results, which
we summarize here. Section G further describes how our results relate to existing work.

Generalized Environments. Section D describes how to extend our results to more general
environments. First, we show how to use the welfare decomposition in environments with

13Welfare assessments by non-welfarist DS-planners (in fact, by non-utilitarian planners) introduce an independent
dimension of time inconsistency. There is scope to further explore the time inconsistency of welfare assessments.
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heterogeneous beliefs, both for welfarist and non-welfarist planners. Second, we describe how to allow
for recursive preferences, in particular, the widely used Epstein-Zin preferences. We also consider the
case of non-time separable non-expected utility preferences. Third, we show that allowing for multiple
consumption goods and factors simply requires redefining instantaneous welfare gains. Fourth, we
describe how to consider perturbations that entail changes in probabilities. Fifth, we show how
to generalize the welfare decomposition to scenarios in which normalized individual, dynamic, or
stochastic weights are zero. Finally, we briefly discuss how to implement the decomposition in
environments with idiosyncratic and aggregate states, a continuum of individuals, dates, or histories,
and non-differentiabilities.

Subdecompositions and Alternative Decompositions. Section E describes how to further
decompose the components of the welfare decomposition. First, we show that welfare assessments
as well as each of the components of the welfare decomposition have a term structure of the form

dW λ

dθ
=
∑
t

ωt
dW λ

t

dθ
where dW λ

t

dθ
= ΞAEt + ΞRSt + ΞISt + ΞRDt . (18)

This structure can be used to compute transition and steady-state welfare gains, and can be refined
to define a stochastic structure of welfare gains. Second, we show that each individual can be
attributed a particular share of each of the components of the welfare decomposition. Third, we
show that it is possible to decompose each of the components into a term due to consumption or
factor supply growth and a term due to reallocation. Fourth, we show how to construct a stochastic
decomposition of aggregate efficiency into expected aggregate efficiency and aggregate smoothing, and
of redistribution into expected redistribution and redistributive smoothing. Finally, we provide two
alternative cross-sectional decompositions of the risk-sharing and intertemporal-sharing components.

Additional Results. Section F includes additional results. First, we derive the welfare
decomposition for general welfare numeraires and discuss the implications of different numeraire
choices. Second, we explain how the ability to costlessly transfer resources across individuals by a
planner impacts the welfare decomposition by limiting cross-sectional variation in normalized weights.
Third, we explain how to translate marginal welfare assessments into global welfare assessments.
Finally, we provide bounds based on the dispersion of normalized weights and welfare gains for ΞRS ,
ΞIS , and ΞRD.
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6 Applications

In this section, we illustrate how the welfare decomposition introduced in this paper can be used
to draw normative conclusions in three scenarios of practical relevance. Table 1 illustrates which
components of the welfare decomposition are non-zero in each application.

Table 1: Summary of Applications

# Application ΞAE ΞRS ΞIS ΞRD

1 Consumption Smoothing = 0 X X X
2 Labor Income Taxation (deterministic) X = 0 = 0 X
2 Labor Income Taxation (stochastic) X X = 0 = 0
3 Credit Constraint Relaxation X X X X

Note: This table illustrates which components of the welfare decomposition are non-zero in each of the applications.

6.1 Application 1: Consumption Smoothing

This application analyzes the welfare effects of a transfer policy that perfectly smooths consumption
across individuals who face idiosyncratic consumption risk. The central takeaway is that the
persistence of the endowment process determines whether the welfare gains from the transfer policy
are attributed to risk-sharing, intertemporal-sharing, or redistribution.

6.1.1 Environment

We consider an infinite-horizon economy with two individuals, i ∈ {1, 2}, with identical preferences.
We formulate preferences recursively as

V i (s) = u
(
ci (s)

)
+ β

∑
s′

π
(
s′|s

)
V i (s′) , where u (c) = c1−γ

1− γ ,

where V i (s) and ci (s) respectively denote the lifetime utility and the consumption of individual i in
a given state s; s and s′ denote possible states, and π (s′|s) denotes Markov transition probabilities;
β is a discount factor, and u (c) denotes the instantaneous utility function.

There is a single nonstorable consumption good. We consider an extreme form of incomplete
markets: no financial markets. So individual consumption in state s is given by

ci (s) = yi (s) + θT i (s) , (19)

where yi (s) denotes individual i’s endowment of the good and T i (s) denotes the transfer policy,
scaled by a parameter θ ∈ [0, 1]. Uncertainty follows a two-state Markov chain. We denote states
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by s = {L,H}, standing for low (L) and high (H) realizations of individual 1’s endowments, y1 (s) .
The transition matrix is given by

Π =

 ρ 1− ρ
1− ρ ρ

 ,
where ρ ∈ [0, 1] captures the persistence of the endowment process. To ensure risk is idiosyncratic,
we assume that y1 (s) = y + ε (s) and y2 (s) = y − ε (s), where y > 0, and where ε (L) = −ε (H).
We consider the welfare assessment of a transfer policy that fully smooths consumption. By setting
T 1 (s) = −ε (s) and T 2 (s) = ε (s), individual consumption takes the form

c1 (s) = y + ε (s) (1− θ) and c2 (s) = y − ε (s) (1− θ) .

By varying θ between 0 and 1, this economy transitions from autarky to perfect consumption
smoothing. We consider an equal-weighted utilitarian SWF, so W

(
V 1, V 2) = V 1 + V 2, and adopt

consumption-based welfare numeraires. Our benchmark parameterization assumes β = 0.95, y = 1,
ε (H) = 0.25, ε (L) = −0.25, γ = 2, and ρ = 0.975.

6.1.2 Results

Normalized Weights. Figure 2 shows normalized dynamic and stochastic weights — defined in
Lemma 1 — when θ = 0.25. Several insights emerge.

First, individuals with an initially low endowment (and high marginal utility) value welfare
gains in early periods relatively more than in later periods. And since dynamic weights add up
to 1 over time, dynamic weights for different individuals necessarily intersect. Second, stochastic
weights show time-dependence despite the stationarity of the model because shocks are persistent.
The persistence of the endowment process explains why individuals value early welfare gains more,
although the impact of the initial state eventually dissipates. In the long run, individuals value
welfare gains more (less) in states with low (high) consumption, as expected. Finally, a normalized
utilitarian planner values lifetime welfare gains for the low endowment individual at the time of the
assessment at roughly 46% more than for the high endowment individual, since

ω1

ω2 = 1.186
0.814 ≈ 1.46, when s0 = L.

Welfare Decomposition. Figure 2 shows the welfare decomposition for three different
parameterizations: ρ = {0.5, 0.975, 0.999} when s0 = L; welfare assessments are identical when
s0 = H.14

14If the model featured a state in which individuals are identical, the welfare decomposition at that state would be
significantly different. Proposition 5 implies that ΞIS = ΞRD = 0 in that case, so every welfare assessment would
exclusively be due to risk-sharing. This fact underscores that the decomposition of welfare assessments critically
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Figure 2: Normalized Weights (Application 1)

Note: This figure shows normalized weights for individual 1 when θ = 0.25. The left panel shows the dynamic weight,
ωit, as a function of time when for different initial states s0 = {H,L}. For reference, it also shows the dynamic weight
for a risk-neutral individual, given by (1− β)βt = βt/

∑
t
βt. The right panel shows the stochastic weights ωit

(
st
)

as a function of time for different initial and final states, s0 = {H,L} and st = {H,L}. The individual weights are
ω1 (s0 = L) = 1.186 and ω1 (s0 = H) = 0.814. Since the model is symmetric, normalized weights for individual 2 can
be read off the weights for individual 1 switching the initial state.

This application illustrates how the persistence of endowment shocks changes the relative
importance of each of the components of the welfare decomposition. When shocks are transitory (ρ =
0.5), risk-sharing dominates, with intertemporal-sharing playing a smaller role and redistribution
being virtually zero. When shocks are persistent (ρ = 0.975), welfare gains are partly attributed to
redistribution, which is larger than intertemporal-sharing, although risk-sharing is still the dominant
component. When shocks are virtually permanent (ρ = 0.999), redistribution dominates, with risk-
sharing and intertemporal-sharing playing a much smaller role. This application is constructed so
that the normalized welfare assessment dWλ

t
dθ is invariant to the level of persistence ρ, underscoring

shifts in the relative contribution of each of the components of the decomposition.
We make four additional observations. First, since this is a single good endowment economy

in which transfers cancel out in the aggregate, Proposition 6 implies that ΞAE = 0. Second, the
optimal policy for a utilitarian planner features perfect consumption smoothing (θ? = 1). This
application is constructed so that the three non-zero components (risk-sharing, intertemporal-sharing,
and redistribution) independently conclude that perfect smoothing is optimal. Hence, in practice,
the rationale justifying such a policy can significantly differ depending on primitives. Third, as shown
in the bottom right panel of Figure 3, intertemporal-sharing is hump-shaped, peaking at ρ = 0.96.
Intuitively, the difference in valuations induced by the inability to borrow and save is maximal when

depends on the state in which an assessment takes place.
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Figure 3: Welfare Decomposition (Application 1)

Note: This figure shows the welfare assessment and its components as a function of the perturbation parameter θ when
s0 = L for three parameterizations: ρ = 0.975 (top panel; benchmark), ρ = 0.5 (bottom left panel), and ρ = 0.999 (top
right panel), when s0 = L. The bottom right panel shows the welfare gains from the smoothing policy (integrating
marginal welfare gains between θ = 0 and θ = 1) as a function of the persistence parameter. This figure illustrates that
the persistence of the endowment process determines whether the welfare gains from the transfer policy are attributed
to risk-sharing, intertemporal-sharing, and redistribution
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Figure 4: Term Structure of Welfare Decomposition (Application 1)

Note: This figure shows the term structure of welfare assessments, dW
λ
t

dθ
, and its non-zero components: ΞRSt , ΞISt , and

ΞRDt , as defined in equation (18) and in Section C of the Online Appendix, when s0 = L.

shocks are persistent. Finally, even though a utilitarian planner finds perfect smoothing optimal,
θ = 1 is not a Pareto improvement relative to θ = 0: the individual with a higher initial endowment
at the time of the assessment is worse off for values of θ near 1, more so when shocks are more
persistent.

Term Structure. Figure 4 shows the term structure of welfare assessments, based on equation (18).
The normalized date-t welfare assessment, dWλ

t
dθ , is only slightly front-loaded. However, the time-

invariance of dW
λ
t

dθ masks significant variation in each of its components. The risk-sharing component,
which is zero at t = 0 and positive at all times, captures all long-run gains from the policy. This occurs
because the smoothing policy has risk-sharing benefits at all dates, since CovΣ

i

[
ωit(st)
ωt(st) ,

dV
i|λ
t (st)
dθ

]
> 0

at all later times after t = 0.
In contrast, both the intertemporal-sharing and redistribution components are positive at t = 0

but end up contributing negatively to the welfare assessment of the policy. Since the normalized
date welfare gains dV

i|λ
t
dθ converge to the same (positive) value for both individuals when t → ∞,

then limt→∞ ΞISt = 0. The date on which the dynamic components of both individuals intersect
determines when ΞISt turns negative. The fact that limt→∞ ΞRDt < 0 is due to the fact that the
individual with the initially low endowment (and high marginal utility) values long-run welfare gains
relatively less. The subtle behavior of ΞISt and ΞRDt is due to the fact that the dynamic weights
intersect, as explained in detail in Section C of the Online Appendix.
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6.2 Application 2: Labor Income Taxation

This application contrasts the welfare effects of (linear) labor income taxes in two environments: i) a
deterministic environment in which individuals differ in their productivity at the time of the welfare
assessment, and ii) a stochastic environment in which individuals are identical at the time of the
welfare assessment, but experience different shocks. While both environments can be parameterized
to yield a quantitatively identical optimal tax, a utilitarian planner attributes the welfare gains
from the tax to redistribution in the deterministic environment and to risk-sharing in the stochastic
environment. Moreover, in the stochastic environment all welfarist planners agree on the magnitude
of the optimal tax, while in the deterministic environment the optimal tax is sensitive to the choice
of welfare function.

6.2.1 Deterministic Earnings

Environment. We first consider a single-date environment with two individuals i ∈ {1, 2} who
make a consumption-labor decision subject to a linear tax in labor earnings. Formally, individual
have identical preferences given by

V i = u
(
ci, ni

)
,

where ci denotes consumption and ni hours worked. Individual budget constraints are given by

ci = (1− τ)wini + g,

where τ is the linear tax rate and g is a uniform per-capita grant (demogrant) that must satisfy
g = 1

I τ
∑
iw

ini, and wi denotes individual i’s wage. We consider an equal-weighted utilitarian
SWF, so W

(
V 1, V 2) = V 1 + V 2, and adopt consumption-based welfare numeraires. To simplify

the exposition, we assume that preferences take the form u
(
ci, ni

)
= 1

1−γ

(
c− αnσσ

)1−γ
. Our

parameterization assumes w1 = 1, w2 = 5, γ = 0.5, σ = 2, and α = 1.

Welfare Decomposition. We now consider the welfare effects of changing the linear tax rate τ
where the demogrant g adjusts to satisfy the government’s budget constraint. The lifetime welfare
gains for individual i induced by a marginal tax change are given by

dV i|λ

dτ
=

dV i

dτ

λi
= −wini + dg

dτ
, (20)

where dg
dτ = 1

I

(∑
iw

ini + τ
∑
iw

i dni

dτ

)
. Since we are considering a static framework, Proposition 6

implies that ΞRS = ΞIS = 0, so the welfare decomposition exclusively features aggregate efficiency
and redistribution. In fact, the welfare assessment of a change in the tax rate can be decomposed as
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Figure 5: Welfare Decomposition (Application 2)

Note: This figure shows the welfare assessment and the components of the welfare decomposition as a function of the
tax rate τ for both the deterministic and random earnings models.

follows:

dW λ

dτ
= −τ

∑
i

wi
(
−dn

i

dτ

)
︸ ︷︷ ︸

ΞAE (Aggregate Efficiency)

+CovΣ
i

[
ωi,−wini

]
︸ ︷︷ ︸
ΞRD (Redistribution)

, where ωi =
∂u(ci,ni)

∂c

1
I

∑
i
∂u(ci,ni)

∂c

. (21)

As illustrated in the left panel of Figure 5, aggregate efficiency welfare gains are 0 at τ = 0 and
become increasingly negative as τ increases. These losses capture how the tax reduces the desire
to work by individuals. Redistribution gains are strictly positive but decreasing, so this optimal
taxation problem is well-behaved and features an optimal interior tax τ? that optimally trades off
aggregate efficiency losses with redistribution gains.15

6.2.2 Random Earnings

Environment. We now consider an environment in which two identical individuals i ∈ {1, 2} face
uninsured earnings risk. At the time of the welfare assessment, individuals have expected utility of
the form

V i =
∑
s

π (s)u
(
ci (s) , ni (s)

)
,

15The optimal linear income tax problem is first studied by Sheshinski (1972). See Piketty and Saez (2013) and
Kaplow (2022) for recent surveys of this area.
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where ci (s) and ni (s) denote consumption and hours work in state s. For simplicity, we assume
that there are two possible states s = {H,L}, with probability π (s) = 1

2 . To ensure that risk is
idiosyncratic, we assume that, in state s = H, wages are given by w1 (H) = w and w2 (H) = w,
while in state L, w1 (L) = w and w2 (H) = w, where w > w. After the state is realized, individuals
make a consumption-labor decision facing a linear tax in labor earnings, and face budget constraints
given by

ci (s) = (1− τ)wi (s)ni (s) + g,

where τ is the linear tax rate, which we assume to be state-independent — without loss of generality,
given the idiosyncratic structure of uncertainty — and g = 1

I τ
∑
iw

ini is a demogrant, also state-
independent. We again consider an equal-weighted utilitarian SWF, so W

(
V 1, V 2) = V 1 + V 2,

and adopt consumption-based welfare numeraires. We assume again that preferences take the form
u
(
ci, ni

)
= 1

1−γ

(
c− αnσσ

)1−γ
. Our parameterization assumes w = 1, w = 5, γ = 0.5, σ = 2, and

α = 1.

Welfare Decomposition. We again consider the welfare effects of changing the linear tax rate
τ where the demogrant g adjusts to satisfy the government’s budget constraint at each state. The
lifetime welfare gains for individual i induced by a marginal tax change are given by

dV i|λ

dτ
=

dV i

dτ

λi
=
∑
s

ωi1 (s)
[
−wi (s)ni (s) + dg

dτ

]
where ωi1 (s) =

π (s) ∂u(c
i(s),ni(s))
∂c(s)∑

s π (s) ∂u(ci(s),ni(s))
∂c(s)

, (22)

and where dg
dτ = 1

I

(∑
iw

i (s)ni (s) + τ
∑
iw

i (s) dn
i(s)
dτ

)
. Since we are considering a framework with

ex-ante identical individuals, Proposition 6 implies that ΞIS = ΞRD = 0, so the welfare decomposition
exclusively features aggregate efficiency and risk-sharing. In fact, the welfare assessment of a change
in the tax rate can be decomposed as follows:

dW λ

dτ
= −τ

∑
s

ω1 (s)
∑
i

wi (s)
(
−dn

i (s)
dτ

)
︸ ︷︷ ︸

ΞAE (Aggregate Efficiency)

+
∑
s

ω1 (s)CovΣ
i

[
ωi1 (s)
ω1 (s) ,−w

i (s)ni (s)
]

︸ ︷︷ ︸
ΞRS (Risk-Sharing)

, (23)

where ω (s) = 1
I

∑
i ω

i (s) and where we use the fact that the normalized individual weight ωi is
identical across individuals. As illustrated in the right panel of Figure 5, aggregate efficiency welfare
losses are 0 at τ = 0 and become increasingly negative as τ increases, for the same reason as in the
deterministic case. Risk-sharing gains are strictly positive but decreasing, as in the deterministic
case. Hence, this optimal taxation problem is also well-behaved and features an optimal interior tax
τ? that optimally trades off aggregate efficiency losses with risk-sharing gains.
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Remark 4. (Pareto Improvement with ΞE > 0 and ΞAE < 0) A tax increase in the random
earnings model illustrates how a welfare assessment can concurrently feature ΞE > 0 and ΞAE < 0.
In this economy, an increase in the tax rate below τ? is indeed a Pareto improvement, which
necessarily implies that ΞE > 0, per Proposition 2c). In that region, aggregate consumption
and, more importantly, aggregate instantaneous welfare gains decrease as τ increases, which implies
that ΞAE < 0. However, the gains from reallocating consumption from individuals with high to
low normalized stochastic weights are sufficiently large to make such tax increases desirable and
ultimately a positive tax optimal.

6.2.3 Comparison of Deterministic and Random Earnings Models

This application shows that the welfare decomposition can be used to argue that the deterministic
and random earnings models feature different equity-efficiency tradeoffs. This contrasts with the
following statement by Piketty and Saez (2013):

“(...) the random earnings model generates both the same equity-efficiency tradeoff and
the same type of optimal tax formula (as the deterministic model).”

Figure 5 precisely compares these two models. While we have parametrized both models so as to
yield the same normalized welfare assessment dWλ

dτ and optimal tax τ?, the welfare decomposition
shows that the rationale justifying the optimal tax in both models is substantially different.

In both models, increasing the tax rate has identical distortionary effects reducing labor supply,
which leads to a reduction in aggregate instantaneous welfare gains and a negative aggregate efficiency
component. However, in the deterministic model the source of welfare gains is redistribution across
individuals, while in the random earnings model the source of welfare gains is risk-sharing. Moreover,
in the random earnings model all welfarist planners agree on the magnitude of the optimal tax,
while in the deterministic model the optimal tax is sensitive to the choice of welfare function. This
occurs because in the random earnings model there is no equity-efficiency tradeoff: all welfare gains
are efficiency gains. In more realistic models in which individuals are both heterogeneous at the
assessment and face uninsured risks (see e.g. Heathcote, Storesletten and Violante (2017)), both
ΞAE , ΞRS , and ΞRD (and typically ΞIS in a model with more dates) will interact non-trivially to
shape the optimal policy.

6.3 Application 3: Credit Constraint Relaxation

This application studies the welfare implications of a change in credit conditions in an economy
in which borrowing-constrained individuals make an investment decision. Varying the borrowing
limit in this economy is a tractable perturbation that parameterizes changes in the degree of market
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completeness. This application, in which all four components of the welfare decomposition are non-
zero, illustrates how the welfare decomposition is useful to uncover subtle normative implications of
a perturbation.

6.3.1 Environment

We consider a two-date economy populated by two (types of) individuals, i ∈ {1, 2}, with identical
preferences, given by

u
(
ci0

)
+ β

∑
s

π (s)u
(
ci1 (s)

)
,

where ci0 and ci1 (s) denote consumption of the single consumption good, π (s) denotes the
probabilities of different states at date 1; β is a discount factor, and u (c) denotes the instantaneous
utility function. Since this application assumes perfect competition, individuals in this model
correspond to a continuum of agents in equal measure. We refer to i = 1 individuals as investors
and to i = 2 individuals as lenders.

Investors face budget constraints given by

ci0 = n0 + q0b
i
0 −Υi

(
ki0

)
ci1 (s) = n1 (s) + z (s) ki0 − bi0,

where n0 and n1 (s) denote endowments of the consumption good, bi0 denotes the face value of the
amount borrowed at price qi0 (the interest rate in this economy is 1/qi0), and Υi

(
ki0
)
denotes the cost

of producing ki0 units of capital at date 0, which yields z (s) units at date 1 in state s. For simplicity,
we assume that there are two states s = {H,L}, with z (H) > z (L), and that

∑
s π (s) z (z) is

sufficiently large so that investors always find it optimal to invest and borrow. Lenders face identical
budget constraints, but cannot operate the capital technology, so Υ2 (k2

0
)

= k2
0 = 0.

Investors can borrow up to a predetermined borrowing limit b:

bi0 ≤ b.

Therefore, this economy features two forms of market incompleteness: i) investors cannot arrange
insurance from lenders against the investment risk they bear since they only have access to a non-
contingent security, and ii) investors and lenders cannot frictionlessly borrow and save when the
borrowing constraint binds.16

An equilibrium is characterized by allocations
{
ci0, c

i
1 (s) , bi0, k1

0
}
and a price of the riskless asset

16An alternative exercise that we do not explore here is to understand the welfare impact of changing the aggregate
amount of public debt — see, for instance, Woodford (1990), or more recently Azzimonti and Yared (2019), among
others.
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Figure 6: Welfare Decomposition and Lifetime Welfare Gains (Application 3)

Note: The left panel of this figure shows the welfare assessment and the components of the welfare decomposition
as a function of the borrowing limit b. The right panel shows the normalized lifetime welfare gains for investors and
lenders, the normalized welfare assessment, and the efficiency component, as a function of the borrowing limit b.

q0 that clears the market for borrowing and saving, so that
∑
i b
i
0 = 0. When solving the model, we

assume that Υ1 (k1
0
)

= φ
2
(
k1

0
)2 and u (c) = c1−γ

1−γ . Our parameterization assumes β = 0.95, γ = 1.5,
φ = 0.1, z (L) = 5, z (H) = 35, π (L) = 0.7, and ni0 = ni1 (s) = 40.

6.3.2 Welfare Decomposition

We consider the welfare effects of varying the borrowing limit b from 0, which corresponds to an
autarky economy, until bu, the level at which the borrowing constraint ceases to bind. The left panel
in Figure 6 shows the normalized welfare assessment and the welfare decomposition associated with
this perturbation. The right panel shows normalized lifetime welfare gains for investors and lenders,
the normalized welfare assessment, and the efficiency component.

Figure 6 illustrates how changes in the borrowing limit impact welfare through the four
components of the welfare decomposition, with each component taking the following sign:

dW λ

db
= ΞAE︸ ︷︷ ︸

>0

+ ΞRS︸︷︷︸
<0

+ ΞIS︸︷︷︸
>0

+ ΞRD︸ ︷︷ ︸
R0

.

First, as we relax the borrowing limit, investors are able to invest more, which increases discounted
(using an aggregate discount factor) aggregate instantaneous welfare gains, which in turn implies
ΞAE > 0. Since relaxing the borrowing limit also increases the resources available to investors at date
0, when their relative valuation is higher, this implies ΞIS > 0. As the borrowing limit approaches
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the unconstrained level of borrowing bu, intertemporal-sharing tends towards zero because, at that
point, dynamic weights are equalized across investors and lenders. In contrast, ΞAE is still strictly
positive. This is explained by the fact that markets remain incomplete, so the economy remains
below first-best.

Second, as we relax the borrowing limit and investors increase their investment, their consumption
becomes relatively more exposed to the investment risk, which they are unable to share with lenders:
formally CovΣ

i

[
ωi1(s)
ω1(s) ,

dci1(s)
db

]
< 0, where dci1(s)

db
= z (s) dk

i
0

db
− dbi0

db
. This justifies why ΞRS < 0 and

illustrates how making markets more complete — in the sense of relaxing a borrowing constraint
— may be associated with a negative risk-sharing component, a phenomenon that may seem
counterintuitive at first. Similar to ΞAE , as the borrowing limit approaches bu, ΞRS is still strictly
negative, as markets remain incomplete for any level of b.

Third, as we relax the borrowing limit, ΞRD switches from negative to positive. In this economy,
the value of a unit of permanent consumption for lenders is higher than for investors since the former
lack access to the profitable investment technology. This difference explains why the normalized
individual weights of a utilitarian planner are ω1 ≈ 0.82 and ω2 ≈ 1.18, favoring welfare gains by
lenders. As we show in the Appendix, exploiting optimality conditions, it is possible to show that
lifetime welfare gains take the form

dV i

db
=
(
u′
(
ci0

)
q0 − β

∑
s

π (s)u′
(
ci1 (s)

)) dbi0
db︸ ︷︷ ︸

Direct Borrowing Effect

+u′
(
ci0

) dq0

db
bi0︸ ︷︷ ︸

Distributive
Pecuniary Effect

. (24)

The direct borrowing effect in (24) is zero for lenders and strictly positive for constrained investors,
while the distributive pecuniary effects are zero-sum in units of date-0 consumption, that is∑
i
dq0
db
bi0 = 0 (Dávila and Korinek, 2018). Because relaxing the borrowing limit increases borrowing

and interest rates, dq0
db

< 0, the distributive pecuniary effect hurts those who borrow (investors) and
benefits those who lend (lenders). The right panel in Figure 6 shows that relaxing the borrowing
limit for low values of b benefits both investors and lenders, with the former benefiting more. As
the borrowing limit b increases, investors’ marginal welfare gains are reduced and eventually turn
negative. This occurs because each individual investor fails to internalize how borrowing more
increases interest rates in the competitive equilibrium, hurting other investors. The right panel of
Figure 6 shows that ΞRD turns negative when the normalized lifetime welfare gains for investors and
lenders intersect.

Finally, it is worth highlighting that the efficiency component as a whole, ΞE = ΞAE+ΞRS+ΞIS ,
is always positive, becoming zero as the borrowing limit approaches bu. While it is natural that the
efficiency implications of relaxing the constraint approach zero as the constraint ceases to bind, this
result implies that ΞAE + ΞRS = 0 when b = bu, further explaining why aggregate efficiency and
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risk-sharing take opposite signs at that point.

7 Conclusion

This paper introduces a decomposition of welfare assessments into four components: i) aggregate
efficiency, ii) intertemporal-sharing, iii) risk-sharing, and iv) redistribution. For welfarist planners,
the decomposition — which satisfies desirable properties — is based on constructing individual,
dynamic, and stochastic weights that characterize how a planner makes tradeoffs across individuals,
dates, and histories. For DS-planners, such weights are defined as a primitive of the welfare
assessment, which allows for a systematic formalization of new welfare criteria based on the
decomposition.

Retrospectively, the welfare decomposition opens the door to revisiting the exact rationales that
have justified welfarist welfare assessments in existing work. Looking forward, we hope that our
results inform ongoing and future discussions on i) the desirability of particular policies and the
welfare impact of shocks, and ii) the design of policy-making mandates.

References

Adler, Matthew D., and Marc Fleurbaey. 2016. The Oxford Handbook of Well-Being and Public Policy.
Oxford University Press.

Alvarez, Fernando, and Urban J Jermann. 2004. “Using Asset Prices to Measure the Cost of Business
Cycles.” Journal of Political Economy, 112(6): 1223–1256.

Atkeson, Andrew, and Christopher Phelan. 1994. “Reconsidering the Costs of Business Cycles with
Incomplete Markets.” NBER Macroeconomics Annual, 9: 187–207.

Azzimonti, Marina, and Pierre Yared. 2019. “The Optimal Public and Private Provision of Safe Assets.”
Journal of Monetary Economics, 102: 126–144.

Benabou, Roland. 2002. “Tax and Education Policy in a Heterogeneous-Agent Economy: What Levels of
Redistribution Maximize Growth and Efficiency?” Econometrica, 70(2): 481–517.

Bergson, Abram. 1938. “A Reformulation of Certain Aspects of Welfare Economics.” Quarterly Journal of
Economics, 52(2): 310–334.

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas Sargent. 2021. “Efficiency, Insurance,
and Redistribution Effects of Government Policies.” Working Paper.

Blume, Lawrence E, Timothy Cogley, David A Easley, Thomas J Sargent, and Viktor
Tsyrennikov. 2018. “A Case for Incomplete Markets.” Journal of Economic Theory, 178: 191–221.

Boadway, Robin, and Neil Bruce. 1984. Welfare Economics. Basil Blackwell, Oxford.
Bohrnstedt, George W, and Arthur S Goldberger. 1969. “On the Exact Covariance of Products of

Random Variables.” Journal of the American Statistical Association, 64(328): 1439–1442.
Brunnermeier, Markus K, Alp Simsek, and Wei Xiong. 2014. “A Welfare Criterion For Models With

Distorted Beliefs.” Quarterly Journal of Economics, 129(4): 1753–1797.

34



Caballero, Ricardo J, and Alp Simsek. 2019. “Prudential Monetary Policy.”
Campbell, John Y. 2018. Financial Decisions and Markets: A Course in Asset Pricing. Princeton University

Press.
Cochrane, John. 2005. Asset Pricing: Revised Edition. Princeton University Press.
Constantinides, G.M., and D. Duffie. 1996. “Asset Pricing with Heterogeneous Consumers.” Journal of

Political Economy, 219–240.
Dávila, Eduardo. 2023. “Optimal Financial Transaction Taxes.” The Journal of Finance, 78(1): 5–61.
Dávila, Eduardo, and Ansgar Walther. 2023. “Prudential Policy with Distorted Beliefs.” American

Economic Review, 113(7): 1967–2006.
Dávila, Eduardo, and Anton Korinek. 2018. “Pecuniary Externalities in Economies with Financial

Frictions.” The Review of Economic Studies, 85(1): 352–395.
Dávila, Eduardo, and Itay Goldstein. 2023. “Optimal Deposit Insurance.” Journal of Political Economy,

131(7): 1676–1730.
Duffie, Darrell. 2001. Dynamic Asset Pricing Theory, Third Edition. Princeton University Press.
Floden, Martin. 2001. “The Effectiveness of Government Debt and Transfers as Insurance.” Journal of

Monetary Economics, 48(1): 81–108.
Fudenberg, Drew, and Jean Tirole. 1991. Game Theory. MIT Press.
Gilboa, Itzhak, Larry Samuelson, and David Schmeidler. 2014. “No-Betting-Pareto Dominance.”

Econometrica, 82(4): 1405–1442.
Guvenen, Fatih, Serdar Ozkan, and Jae Song. 2014. “The Nature of Countercyclical Income Risk.”

Journal of Political Economy, 122(3): 621–660.
Harsanyi, John C. 1955. “Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of

Utility.” Journal of Political Economy, 63(4): 309–321.
Heathcote, Jonathan, Kjetil Storesletten, and Giovanni Violante. 2017. “Optimal Tax Progressivity:

An Analytical Framework.” Quarterly Journal of Economics, 132(4): 1693–1754.
Hendren, Nathaniel. 2020. “Measuring Economic Efficiency Using Inverse-Optimum Weights.” Journal of

Public Economics, 187: 104198.
Hendren, Nathaniel, and Ben Sprung-Keyser. 2020. “A Unified Welfare Analysis of Government

Policies.” Quarterly Journal of Economics, 135(3): 1209–1318.
Hicks, John R. 1939. “The Foundations of Welfare Economics.” The Economic Journal, 696–712.
Kaldor, Nicholas. 1939. “Welfare Propositions of Economics and Interpersonal Comparisons of Utility.”

Economic Journal, 49(195): 549–552.
Kaplow, Louis. 2011. The Theory of Taxation and Public Economics. Princeton University Press.
Kaplow, Louis. 2022. “Optimal Income Taxation.” NBER Working Paper.
Kaplow, Louis, and Steven Shavell. 2001. “Any Non-Welfarist Method of Policy Assessment Violates the

Pareto Principle.” Journal of Political Economy, 109(2): 281–286.
Krueger, Dirk, and Hanno Lustig. 2010. “When Is Market Incompleteness Irrelevant for the Price of

Aggregate Risk (and When Is It Not)?” Journal of Economic Theory, 145(1): 1–41.
Krusell, Per, and Anthony A Smith. 1999. “On the Welfare Effects of Eliminating Business Cycles.”

Review of Economic Dynamics, 2(1): 245–272.

35



Krusell, Per, Toshihiko Mukoyama, Ayşegül Şahin, and Anthony A Smith Jr. 2009. “Revisiting
the Welfare Effects of Eliminating Business Cycles.” Review of Economic Dynamics, 12(3): 393–404.

Ljungqvist, Lars, and Thomas J. Sargent. 2018. Recursive Macroeconomic Theory. The MIT Press.
Lucas, Robert E. 1987. Models of Business Cycles. Basil Blackwell New York.
Mailath, George J, and Larry Samuelson. 2006. Repeated Games and Reputations: Long-Run

Relationships. Oxford University Press.
Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green. 1995.Microeconomic Theory. Oxford

University Press.
Piketty, Thomas, and Emmanuel Saez. 2013. “Optimal Labor Income Taxation.” In Handbook of Public

Economics. Vol. 5, 391–474.
Rogoff, Kenneth. 1985. “The Optimal Degree of Commitment to an Intermediate Monetary Target.”

Quarterly Journal of Economics, 100(4): 1169–1189.
Saez, Emmanuel, and Stefanie Stantcheva. 2016. “Generalized Social Marginal Welfare Weights for

Optimal Tax Theory.” American Economic Review, 106(1): 24–45.
Samuelson, Paul Anthony. 1947. Foundations of Economic Analysis.
Schlee, Edward E. 2013. “Radner’s Cost–Benefit Analysis in the Small: An Equivalence Result.” Economics

Letters, 120(3): 570–572.
Schulz, Karl, Aleh Tsyvinski, and Nicolas Werquin. 2023. “Generalized Compensation Principle.”

Theoretical Economics, 18(4): 1665–1710.
Sen, Amartya. 1970. “Interpersonal Aggregation and Partial Comparability.” Econometrica, 393–409.
Seshadri, Ananth, and Kazuhiro Yuki. 2004. “Equity and Efficiency Effects of Redistributive Policies.”

Journal of Monetary Economics, 51(7): 1415–1447.
Sheshinski, Eytan. 1972. “The Optimal Linear Income-tax.” The Review of Economic Studies, 39(3): 297–

302.
Silberberg, Eugene. 1972. “Duality and the Many Consumer’s Surpluses.” American Economic Review,

62(5): 942–952.
Stahl, Dale O. 1984. “Monotonic Variations of Consumer Surplus and Comparative Performance Results.”

Southern Economic Journal, 503–520.
Woodford, Michael. 1990. “Public Debt as Private Liquidity.” American Economic Review, 80(2): 382–388.
Zajac, E.E. 1979. “Dupuit-Marshall Consumer’s Surplus, Utility, and Revealed Preference.” Journal of

Economic Theory, 20(2): 260–270.

36



Appendix
A Proofs and Derivations: Section 3

Proof of Lemma 1. (Normalized Welfare Gains and Normalized Weights)

Proof. We can express an (unnormalized) welfare assessment dW
dθ as

dW

dθ
=
∑
i

∂W
∂V i

dV i

dθ
=
∑
i

∂W
∂V i

λi
dV i

dθ

λi
,

so the normalized welfare assessment takes the form

dW λ

dθ
=

dW
dθ

1
I

∑
i
∂W
∂V i

λi
=
∑
i

ωi
dV i

dθ

λi
, where ωi =

∂W
∂V i

λi

1
I

∑
i
∂W
∂V i

λi
.

We can then express lifetime welfare gains in units of the lifetime welfare numeraire as

dV i|λ

dθ
=

dV i
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,

where ωit =
∑

st(βi)
t
πt(st|s0)λit(st)
λi

, ωit
(
st
)

= (βi)tπt(st|s0)λit(st)∑
st

(βi)tπt(st|s0)λit(st)
, and dV

i|λ
t (st)
dθ is defined in equation

(6). Equations (7), (8), and (9) follow from the choice of welfare numeraires formalized in equation
(OA11).

Proof of Proposition 1. (Efficiency/Redistribution Decomposition)

Proof. For any two random variables xi and yi, it follows that
∑
i xiyi = 1

I

∑
i xi

∑
i yi+CovΣ

i [xi, yi],
where CovΣ

i [xi, yi] = I · Covi [xi, yi]. Equation (10) follows from

dW λ

dθ
=
∑
i

ωi
dV i|λ

dθ
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∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i
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ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸

ΞRD

,

where we use the fact that 1
I

∑
i ω

i = 1. This is the unique decomposition of the weighted sum∑
i ω

i dV i|λ

dθ into an unweighted sum and its complement.
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Proof of Proposition 2. (Properties of Efficiency/Redistribution Decomposition)

Proof. a) This result follows from the fact that the SWF exclusively impacts the definition of ωi, and
that dV i|λ

dθ — equivalently, normalized dynamic and stochastic weights — is invariant to the SWF.
b) This result follows from the fact that dV i|λ

dθ — equivalently, normalized dynamic and stochastic
weights — is invariant to the preference-preserving transformations considered.

c) In a Pareto-improving perturbation, it must be that dV i|λ

dθ ≥ 0 for all individuals, with a strict
inequality for at least one individual. Therefore,

∑
i
dV i|λ

dθ > 0.

Proof of Proposition 3. (Aggregate Efficiency/Risk-Sharing/Intertemporal-Sharing
Decomposition)

Proof. Starting from the definition of the efficiency component:
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Proof of Proposition 4. (Properties of Aggregate
Efficiency/Risk-Sharing/Intertemporal-Sharing Decomposition)

Proof. a) When marginal rates of substitution are equalized across all dates and histories across
individuals, ωit

(
st
)

= ωt
(
st
)
and ωit = ωt. Alternatively, from equation (13), when markets are

complete there is a unique stochastic discount factor, which implies that qit
(
st
)

= qt
(
st
)
. Proposition

5a) then implies that ΞRS = ΞIS = 0.
b) When marginal rates of substitution are equalized across all dates across individuals, ωit = ωt.

Alternatively, from equation (13), when individuals can frictionlessly borrow and save,
∑
st q

i
t

(
st
)
is

identical across individuals. Proposition 5a) then implies that ΞIS = 0.
c) This result follows from the definition of ΞAE when

∑
i
dV

i|λ
t (st)
dθ = 0, ∀st.

Proof of Proposition 5. (Properties of Welfare Assessment Decomposition: Individual-
Invariant Weights or Welfare Gains)

Proof. a) If ωit
(
st
)
are identical across individuals, CovΣ

i

[
ωit
(
st
)
,
dV

i|λ
t (st)
dθ

]
= 0, ∀t, ∀st, so ΞRS = 0.
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]
= 0, ∀t, so ΞIS = 0. If ωi are identical across
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]
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= 0, ∀t, so ΞIS = 0. If dV i|λ
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across individuals, CovΣ
i
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dθ

]
= 0, so ΞRD = 0.

Proof of Proposition 6. (Properties of Welfare Decomposition: Particular Economies)

Proof. a) If I = 1, all normalized weights are trivially identical across individuals. The result then
follows from Proposition 5a).

b) If there is no risk, ωit
(
st
)

= 1, ∀st. The result then follows from Proposition 5a).
c) If individuals are ex-ante identical, ωi and ωit are identical across individuals. The result then

follows from Proposition 5a).
d) Since we have assumed that π0

(
s0|s0

)
= 1, ωi0 = ωi0

(
st
)

= 1 when T = 0.17 The result then
follows from Proposition 5a).

e) In a single good endowment economy, the single good is the only possible instantaneous welfare
numeraire. Hence

∑
i
dV

i|λ
t (st)
dθ =

∑
i
dcit(st)
dθ = 0, where the last equality follows from the fact that

17Models with a single date but multiple histories — as the random earnings scenario in Application 2 — can be
interpreted as a two-date model in which instantaneous utility is zero at the initial date: see Section D.5 of the Online
Appendix.
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the aggregate consumption equals the aggregate endowment, which is invariant to the perturbation.
The result then follows from the definition of ΞAE .

Proof of Proposition 7. (Properties of Welfare Decomposition: Transfers)

Proof. In a) a planner sets transfers so that ωi is identical across individuals. In b), a planner sets
transfers so that ωit is identical across individuals. In c), a planner sets transfers so that ωit

(
st
)
is

identical across individuals. The results then follow from Proposition 5a).
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Online Appendix
Sections B and C of this Online Appendix include proofs and derivations for Sections 4 and 6 of the
paper. Sections D, E, and F include extensions and additional results, and Section G relates our
results to existing work.

B Proofs and Derivations: Section 4

Proof of Proposition 8. (Relation between Welfarist and AE/AR/NR Pseudo-welfarist
Planners)

Proof. a) The welfare assessment for the AE pseudo-welfarist DS-planner corresponds to

dWAE

dθ
=
∑
t

ωWt
∑
st

ωWt

(
st
)∑

i

dV
i|λ
t
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st
)

dθ
,

where ΞRS = ΞIS = ΞRD = 0, following Proposition 5a).
b) The welfare assessment for the AE pseudo-welfarist DS-planner corresponds to

dWAR
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,

where ΞIS = ΞRD = 0, following Proposition 5a).
c) The welfare assessment for the AE pseudo-welfarist DS-planner corresponds to

dWNR
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=
∑
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where ΞRD = 0, following Proposition 5a).

General DS-planners. While in the body of the paper we focus on pseudo-welfarist DS-planners,
it is straightforward to define DS-planners that are not pseudo-welfarist. In general, Proposition 5a)
provides the recipe to define planners for whom specific components of the welfare decomposition
are zero. For instance, one could choose the following weights to define an AE DS-planner:

ωi,AE (s0) = 1, ωi,AEt (s0) = βt, and ωi,AEt

(
st
)

= πt
(
st
∣∣∣ s0
)
,
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Table OA-1: Summary of DS-Planners

DS-Planners ΞAE ΞRS ΞIS ΞRD

Aggregate Efficiency (AE) X = 0 = 0 = 0
Aggregate Efficiency/Risk-Sharing (AR) X X = 0 = 0

No-Redistribution (NR) X X X = 0
Welfarist (W) X X X X

Note: This table illustrates the non-zero components of the welfare decomposition for particular DS-planners.

for some β, plausibly β = 1
I

∑
i β

i. A similar logic can be used to define general (non-pseudo-welfarist)
AR and NR planners. Table OA-1 summarizes which components of the welfare decomposition
are zero general DS-planners. Non-pseudo-welfarist DS-planners may be helpful in particular
applications, partly because they may be easier to operationalize.

DS-weights vs. Normalized Weights. Earlier versions of this paper defined DS-planners in
terms of DS-weights, ω̃it

(
st
)
, given by

ω̃it

(
st
)

︸ ︷︷ ︸
DS-weight

= ωi (s0)︸ ︷︷ ︸
individual

ωit (s0)︸ ︷︷ ︸
dynamic

ω(st)︸ ︷︷ ︸
stochastic

,

as the primitive to define DS-planners. Up to a choice of units for the (aggregate) welfare assessment,
there is a one-to-one relation between both approaches.

Note that these formulations respect intratemporal tradeoffs, by taking dV
i|λ
t (st)
dθ , as defined in

(6), as a primitive of the welfare assessment. By redefining dV
i|λ
t (st)
dθ as a weighted sum — based

on generalized weights, chosen by a planner — of changes in consumption and factor supply it is
possible to define a welfare objective based on generalized weights at the good/factor-history level.

Institutional Design. A central objective of this paper is to provide a framework to systematically
formalize new welfare criteria to assess and conduct policy. This has the potential to guide the design
of independent technocratic institutions. In practice, such institutions must be given a “mandate”,
much like defining a set of normalized weights.

Therefore, a society may want to consider designing independent technocratic institutions that
have some normative considerations in their mandate but not others, along the lines of the logic
developed in this paper. For instance, the current “dual mandate” (stable prices and maximum
employment) of the Federal Reserve (as defined by the 1977 Federal Reserve Act) seems to be
better described by an aggregate efficiency DS-planner, rather than a welfarist planner, which
would care about cross-sectional considerations. Alternatively, an institution like the Federal
Emergency Management Agency (FEMA) has as part of its mandate to “support the Nation in a
risk-based, comprehensive emergency management system”, which unavoidably involves risk-sharing
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considerations.

Instantaneous SWF Formulation. Section 4 shows that an approach based on generalized
marginal DS-weights defined over instantaneous welfare gains allows us to systematically define
non-welfarist normative objectives. Here, we show that it is possible to interpret dWDS

dθ , defined in
Equation (14), as the welfare assessment of a planner with a (instantaneous) Social Welfare Function
that i) takes as arguments individuals’ instantaneous utilities, not lifetime utilities, and ii) features
generalized (endogenous) welfare weights.

Formally, a linear instantaneous Social Welfare Function, which we denote by I (·), is a linear
function of individuals’ instantaneous utilities, given by

I
({
uit

(
cit

(
st
)
, nit

(
st
))

; st
}
i,t,st

)
=
∑
i

∑
t

∑
st

αit

(
st
)
uit

(
cit

(
st
)
, nit

(
st
)

; st
)
, (OA1)

where the instantaneous Pareto weights αit
(
st
)
define scalars that are individual-, date-, and history-

specific. For any set of DS-weights, there exist instantaneous Pareto weights
{
αit
(
st
)}
i,t,st such that

dWDS

dθ , defined in Equation (14), corresponds to the first-order condition of a planner who maximizes
a linear instantaneous SWF I (·) with instantaneous Pareto weights αit

(
st
)

= ωit
(
st; θ

)
/
∂ui(st;θ)

∂cit
,

since
dI (·)
dθ

=
∑
i

∑
t

∑
st

λit

(
st
) ∂ui (st)

∂cit

duit
(
st
)

dθ
. (OA2)

Moreover, at a local optimum, in which dWDS

dθ = 0, there exist instantaneous Pareto weights{
αit
(
st
)}
i,t,st such that the optimal policy satisfies the first-order condition formula of a linear

instantaneous SWF I (·), defined in Equation (OA1). The instantaneous Pareto weights in that
case are evaluated at the optimum, so λit

(
st
)

= ωit
(
st; θ?

)
/
∂ui(st;θ?)

∂cit
, where θ? denotes the value of

θ at the local optimum.
These results are helpful because they show how to reverse-engineer Pareto weights of a

linear instantaneous SWF from DS-weights, while guaranteeing that any local optimum can be
interpreted as the solution to the maximization of a particular linear instantaneous SWF. Because the
instantaneous Pareto weights λit

(
st
)
are evaluated at the optimum θ?, they are taken as fixed in the

maximization of a linear instantaneous SWF. In practice, it is impossible to define the instantaneous
Pareto weights λit

(
st
)
without first having solved for the optimum using our approach that starts

with DS-weights as primitives. Relatedly, it is typically impossible to translate DS-weights into
instantaneous Pareto weights that are invariant to θ and the rest of the environment. As mentioned
above, there is scope to explore further the welfare implications of using SWFs directly defined over
consumption or factor supply at histories.
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DS-PLANNERS

NON-PATERNALISTIC PATERNALISTIC
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s

Figure OA-1: DS-planners: Summary

Note: This figure summarizes the relations between the different DS-planners. The vertical dashed line separates non-
paternalistic planners from paternalistic planners. All welfarist planners, as well as no-redistribution (NR) planners,
are non-paternalistic. Aggregate efficiency (AE) and aggregate efficiency/risk-sharing (AR) planners are paternalistic.
Some pseudo-welfarist planners are non-paternalistic (welfarist, NR), while others are paternalistic (AE, AR). In this
figure, the α-DS-planners are pseudo-welfarist with respect to the utilitarian planner.

α-DS-planners. The planners introduced in Section 4 and here by no means exhaust the set of
new planners that can be defined using DS-weights. In fact, it is possible to define a new planner that
spans i) AE, ii) AR, and iii) NR pseudo-welfarist planners, as well as iv) the associated normalized
welfarist planner. We refer to this planner as an α-DS-planner.

Definition. (α-DS-planner: definition) An α-DS-planner is a DS-planner for whom the individual,
dynamic, and stochastic weights are linear combinations of the weights of a normalized welfarist
planner and the weights of an AE pseudo-welfarist planner. An α-DS-planner has DS-weights
ωi,W,α
t

(
st
∣∣ s0
)
defined by

ωi,W,α
t

(
st
)

= (1− α2)ωi,W,AE
t

(
st
)

+ α2ω
i,W
t

(
st
)

ωi,W,α
t = (1− α3)ωi,W,AE

t + α3ω
i,W
t

ωi,W,α = (1− α4)ωi,W,AE + α4ω
i,W ,

where α = (α2, α3, α4), and where α2 ∈ [0, 1], α3 ∈ [0, 1], α4 ∈ [0, 1].

Depending on the value of α, an α-DS-planner behaves as a particular pseudo-welfarist planner
or as a combination of pseudo-welfarist planners. When α = (0, 0, 0), we have a pseudo-welfarist
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AE DS-planner; when α = (1, 0, 0), we have an pseudo-welfarist AR DS-planner; when α = (1, 1, 0),
we have a pseudo-welfarist NR DS-planner; and when α = (1, 1, 1), we have a welfarist planner.
By varying α, it is possible to model planners who care about the different components to different
degrees. Moreover, estimating α from actual policies in the context of a particular policy problem
has the potential to uncover the weights that a particular policymaker attaches in practice to the
different components of the welfare decomposition.

C Proofs and Derivations: Section 6

C.1 Application 1

Figure OA-2 here explains the behavior of ΞISt and ΞRDt in Figure 4 in the text. Note that

ΞISt = CovΣ
i

[
ωit
ωt
,
dV

i|λ
t

dθ

]

ΞRDt = CovΣ
i

[
ωi,

ωit
ωt

dV
i|λ
t

dθ

]
.

The left panel in Figure OA-2 shows that the risk-discounted welfare gains for individual i at date t,
dV

i|λ
t
dθ , are initially positive for the individual with the lower endowment at s0 = L (individual 1) and

negative for the individual with the higher endowment, although they both converge to a positive
common value. This captures the fact that the policy initially hurts the individual who starts with
a high endowment and benefits the individual who starts with a low endowment, but as time goes
by, the identity of the favored individual is uncertain. In the long run, both individuals are favored
by the policy by eliminating consumption risk.

The right panel in Figure OA-2 shows that the risk-discounted welfare gains for individual i at
date t relative to the average, ω

i
t
ωt

dV
i|λ
t
dθ , converge to positive values for both individuals, but initially

negative and higher in the long run for individual 2 (with the higher endowment at s0 = L). Because
ωit
ωt

dV
i|λ
t
dθ does not converge to the same value for both individuals, ΞRDt is non-zero (negative) in the

long-run. Intuitively, while the long-run welfare gains of the policy at date t are positive and equal
for both individuals at date t, such gains are valued more by the individual with a higher endowment
at the time of the assessment, since this individual values future consumption in the future relatively
more — see the dynamic weights in the left panel of Figure 2. And since the individual with the
higher endowment at the time of the assessment also features a lower individual weight ωi, this logic
makes ΞRDt negative in the long run.
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Figure OA-2: Welfare Decomposition and Lifetime Welfare Gains (Application 1)

Note: The left panel of this figure shows the risk-discounted welfare gains for individual i at date t, dV
i|λ
t
dθ

. The right

panel of this figure shows the risk-discounted welfare gains for individual i at date t relative to the average, ω
i
t
ωt

dV
i|λ
t
dθ

C.2 Application 2

C.2.1 Deterministic Earnings

The optimal consumption-labor decision for each individual i is given by

(1− τ)wi∂u
(
ci, ni

)
∂ci

+ ∂u
(
ci, ni

)
∂ni

= 0. (OA3)

Given the assumed preferences u
(
ci, ni

)
= 1

1−γ

(
c− αnσσ

)1−γ
, equation (OA3) defines a labor supply

function

ni (τ) =
(

(1− τ)wi

α

) 1
σ−1

,

which allows us to express the demogrant as g (τ) = τ 1
I

∑
iw

ini (τ), which in turn implies that

dg

dτ
= 1
I

(∑
i

wini + τ
∑
i

wi
dni

dτ

)
.
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We can express individual lifetime welfare gains dV i

dτ as

dV i

dτ
= ∂u

(
ci, ni

)
∂ci

dci

dτ
+ ∂u

(
ci, ni

)
∂ni

dni

dτ

= ∂u
(
ci, ni

)
∂ci

(
−wini + (1− τ)widn

i

dτ
+ dg

dτ

)
+ ∂u

(
ci, ni

)
∂ni

dni

dτ

= ∂u
(
ci, ni

)
∂ci

(
−wini + dg

dτ

)
,

which corresponds to equation (20) in the text, using consumption as lifetime welfare numeraire:
λi = ∂u(ci,ni)

∂ci
.

Hence, in this economy

dW λ

dτ
=
∑
i

ωi
dV i|λ

dτ
=
∑
i

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i

[
ωi,

dV i|λ

dθ

]
︸ ︷︷ ︸

ΞRD

,

where ωi =
∂W
∂V i

∂u(ci,ni)
∂ci

1
I

∑
i
∂W
∂V i

∂u(ci,ni)
∂ci

(with ∂W
∂V i

= 1), and where

ΞE =
∑
i

(
−wini + dg

dτ

)
= τ

∑
i

wi
dni

dτ

ΞRD = CovΣ
i

[
ωi,−wini + dg

dτ

]
= CovΣ

i

[
ωi,−wini

]
,

which corresponds to equation (21) in the text.

C.2.2 Random Earnings

The optimal consumption-labor decision for each individual i is identical to the deterministic case
for a given realization of s. Hence,

(1− τ)wi (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s) + ∂u

(
ci (s) , ni (s)

)
∂ni (s) = 0. (OA4)

Hence, the labor supply function in state s is given by

ni (s, τ) =
(

(1− τ)wi (s)
α

) 1
σ−1

,
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where the demogrant, which the same regardless of s by virtue of the symmetry assumptions, is
g (τ) = τ 1

I

∑
iw

i (s)ni (s), which in turn implies that

dg

dτ
= 1
I

(∑
i

wi (s)ni (s) + τ
∑
i

wi (s) dn
i (s)
dτ

)
.

We can express individual lifetime welfare gains dV i

dτ as

dV i

dτ
=
∑
s

π (s)
(
∂u
(
ci (s) , ni (s)

)
∂ci (s)

dci (s)
dτ

+ ∂u
(
ci (s) , ni (s)

)
∂ni

dni (s)
dτ

)

=
∑
s

π (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s)

dci (s)
dτ

+
∂u(ci(s),ni(s))

∂ni

∂u(ci(s),ni(s))
∂ci(s)

dni (s)
dτ


=
∑
s

π (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s)

−wi (s)ni (s) + (1− τ)wi (s) dn
i (s)
dτ

+ dg

dτ
+

∂u(ci(s),ni(s))
∂ni

∂u(ci(s),ni(s))
∂ci(s)

dni (s)
dτ


=
∑
s

π (s) ∂u
(
ci (s) , ni (s)

)
∂ci (s)

(
−wi (s)ni (s) + dg

dτ

)
,

which corresponds to equation (22) in the text, using permanent consumption as lifetime welfare
numeraire: λi =

∑
s π (s) ∂u(c

i(s),ni(s))
∂ci(s) .

Given the symmetry assumptions, in this economy

dW λ

dτ
=
∑
i

ωi
dV i|λ

dτ
=
∑
i

dV i|λ

dθ
= ΞE ,

since ωi =
∂W
∂V i

∑
s
π(s)

∂u(ci(s),ni(s))
∂ci(s)

1
I

∑
i
∂W
∂V i

∑
s
π(s) ∂u(ci(s),ni(s))

∂ci(s)

(with ∂W
∂V i

= 1) is identical across individuals, and where

dV i|λ

dτ
=
∑
s

ωi (s) dV
i|λ

1 (s)
dθ

, where dV
i|λ

1 (s)
dθ

= −wi (s)ni (s) + dg

dτ
.

Therefore

dW λ

dτ
= ΞE =

∑
s

ω1 (s)
∑
i

dV
i|λ

1 (s)
dθ︸ ︷︷ ︸

ΞAE

+
∑
s

ω1 (s)CovΣ
i

[
ωi1 (s)
ω1 (s) ,

dV
i|λ

1 (s)
dθ

]
︸ ︷︷ ︸

ΞRS

,
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where ωi1 (s) =
π(s)

∂u(ci(s),ni(s))
∂ci(s)∑

s
π(s) ∂u(ci(s),ni(s))

∂ci(s)

, ωi1 (s) = 1
I

∑
i ω

i
1 (s), and where

ΞAE = τ
∑
s

ω1 (s)
∑
i

wi (s) dn
i (s)
dτ

ΞRS =
∑
s

ω1 (s)CovΣ
i

[
ωi1 (s)
ω1 (s) ,−w

i (s)ni (s)
]
,

which corresponds to equation (23) in the text.

C.3 Application 3

In addition to market clearing, an equilibrium in this economy is characterized by i) the
borrowing/saving optimality conditions for both individuals:

u′
(
ci0

)
q0 − β

∑
s

π (s)u′
(
ci1 (s)

)
= ηi,

where ηi ≥ 0 denotes the Lagrange multiplier in the borrowing constraint (with η2 = 0), and ii) the
investment optimality condition for investors:

u′
(
c1

0

)
Υ′
(
k1

0

)
− β

∑
s

π (s)u′
(
c1

1 (s)
)
z (s) = 0.

Provided that the returns to investment are sufficiently attractive (which we always assume), the
investor’s borrowing constraint binds whenever b is sufficiently low, but ceases to bind at a level of
b we denote by bu.

We can express individual lifetime welfare gains dV i

db
as

dV i

db
= u′

(
ci0

)
dci0 − β

∑
s

π (s)u′
(
ci1 (s)

)
dci1 (s) ,

where consumption changes are given by

dci0 = dq0

db
bi0 + q0

dbi0
db
−Υ′

(
ki0

) dki0
db

dci1 (s) = z (s) dk
i
0

db
− dbi0

db
.

Hence, normalized individual lifetime welfare gains take the form

dV i|λ

db
=

dV i

db

λi
= ωi0dc

i
0 + ω1

∑
s

ωi1 (s) dci1 (s) ,
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where ωi0 = u′(ci0)
λi

and ωi1 = β
∑

s
π(s)u′(ci1(s))
λi

with λi = u′
(
ci0
)

+ β
∑
s π (s)u′

(
ci1 (s)

)
and where

ωi1 (s) = π(s)u′(ci1(s))∑
s
π(s)u′(ci1(s)) .

Hence, in this economy

dW λ

db
=
∑
i

ωi
dV i|λ

db
=
∑
i

dV i|λ

db
+ CovΣ

i

[
ωi,

dV i|λ

db

]
,

where ωi =
∂W
∂V i

(u′(ci0)+β
∑

s
π(s)u′(ci1(s)))

1
I

∑
i
∂W
∂V i

(u′(ci0)+β
∑

s
π(s)u′(ci1(s))) with ∂W

∂V i
= 1. Moreover

ΞE = ΞAE + ΞRS + ΞIS ,

where

ΞAE = ω0
∑
i

dci0
db

+ ω1
∑
s

ω1 (s)
∑
i

dci1 (s)
db

ΞRS = ω1
∑
s

ω1 (s)CovΣ
i

[
ωi1 (s)
ω1 (s) ,

dci1 (s)
db

]

ΞIS = ω0CovΣ
i

[
ωi0
ω0
,
dci0
db

]
+ ω1CovΣ

i

[
ωi1
ω1
,
∑
s

ωi1 (s) dc
i
1 (s)
db

]

where ωi1 = 1
I

∑
i ω

i
1 and ωi1 (s) = 1

I

∑
i ω

i
1 (s). Note that the impact of the perturbation on aggregate

consumption, which is the key input into the aggregate efficiency component, is given by

∑
i

dci0
db

= −Υ′
(
k1

0

) dk1
0

db∑
i

dci1 (s)
db

= z (s) dk
1
0

db
.

Note that we can use individual optimality (i.e., the envelope theorem) to express lifetime welfare
gains as

dV i

db
= u′

(
ci0

)
dci0 − β

∑
s

π (s)u′
(
ci1 (s)

)
dci1 (s)

= u′
(
ci0

)(dq0

db
bi0 + q0

dbi1
db
−Υ′

(
ki0

) dki0
db

)
− β

∑
s

π (s)u′
(
ci1 (s)

)(
z (s) dk

i
0

db
− dbi0

db

)

=
(
u′
(
ci0

)
q0 − β

∑
s

π (s)u′
(
ci1 (s)

)) dbi0
db︸ ︷︷ ︸

Direct Effect

+ u′
(
ci0

) dq0

db
bi0︸ ︷︷ ︸

Distributive Pecuniary Effect

,

where the direct effect is weakly positive for investors and zero for lenders, and the distributive
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pecuniary effect is negative for investors and positive for lenders, although zero sum in the aggregate
at date 0 since

∑
i
dq0
db
bi0 = 0 (Dávila and Korinek, 2018). While this formulation is useful to

understand how individual lifetime utility changes, it is not useful to decompose welfare assessments
in the way introduced in this paper.

D Extensions: Generalized Environments

In this section, we describe how to extend our results to more general environments.

D.1 Heterogeneous Beliefs

Here, we describe how to use the framework introduced in this paper to make welfare assessments
in environments with heterogeneous beliefs.18 To model heterogeneous beliefs, we assume that
individual preferences take the form

V i =
∑
t

(
βi
)t∑

st

πit

(
st
∣∣∣ s0
)
uit

(
cit

(
st
)
, nit

(
st
)
, st
)
,

where πit
(
st
∣∣ s0
)
denotes the beliefs held by individual i over histories, which are now individual-

specific. In this case, welfarist welfare assessments (respecting individual beliefs) are as described in
the body of the paper, simply using the following normalized weights:

ωi =
∂W
∂V i

∑
t

(
βi
)t∑

st π
i
t

(
st
∣∣ s0
) ∂uit(st)

∂cit

1
I

∑
i
∂W
∂V i

∑
t (βi)t

∑
st π

i
t (st| s0) ∂u

i
t(st)
∂cit

ωit =

(
βi
)t∑

st π
i
t

(
st|s0

) ∂uit(st)
∂cit∑

t (βi)t
∑
st π

i
t (st| s0) ∂u

i
t(st)
∂cit

ωit

(
st
)

=
πit
(
st|s0

) ∂uit(st)
∂cit∑

st π
i
t (st|s0) ∂u

i
t(st)
∂cit

.

Alternatively, a paternalistic planner is a DS-planner — introduced in Section (4) — who computes
welfare using different beliefs than those held by investors (potentially using a common belief), simply

18A recent literature has explored how to make normative assessments in environments with heterogeneous beliefs.
See, among others, Brunnermeier, Simsek and Xiong (2014), Gilboa, Samuelson and Schmeidler (2014), Dávila (2023),
Blume et al. (2018), Caballero and Simsek (2019), and Dávila and Walther (2023).
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computes welfare assessment using the following normalized weights:

ωi =
∂W
∂V i

∑
t

(
βi
)t∑

st π
i,P
t

(
st
∣∣ s0
) ∂uit(st)

∂cit

1
I

∑
i
∂W
∂V i

∑
t (βi)t

∑
st π

i,P
t (st| s0) ∂u

i
t(st)
∂cit

ωit =

(
βi
)t∑

st π
i,P
t

(
st|s0

) ∂uit(st)
∂cit∑

t (βi)t
∑
st π

i,P
t (st| s0) ∂u

i
t(st)
∂cit

ωit

(
st
)

=
πi,Pt

(
st|s0

) ∂uit(st)
∂cit∑

st π
i,P
t (st|s0) ∂u

i
t(st)
∂cit

,

where πi,Pt
(
st|s0

)
denotes the beliefs used by the planner to compute welfare for individual i at a

particular history. In a single belief case, πi,Pt
(
st|s0

)
= πPt

(
st|s0

)
, ∀i. See e.g. Dávila and Walther

(2023) for an application of this approach to compute optimal leverage regulation.

D.2 General Preferences

D.2.1 Recursive utility: Epstein-Zin Preferences

Here, we describe how to allow for recursive preferences. In particular, we consider the widely used
Epstein-Zin preferences, defined recursively as follows:

V i (s) =

(1− βi
) (
ui
(
ci (s) , ni (s)

))1− 1
ψi + βi

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) 1− 1
ψi

1−γi


1

1− 1
ψi

,

where γi modulates risk aversion and ψi modulates intertemporal substitution. We use s and s′ to
denote any two recursive states (Ljungqvist and Sargent, 2018).

In this case, we can recursively express the lifetime welfare gains of a perturbation in utils, as
follows:

dV i (s)
dθ

= ∂V i (s)
∂ci (s)

dui|λ (s)
dθ

+
∑
s′

∂V i (s)
∂V i (s′)

dV i (s′)
dθ

, (OA5)

where

∂V i (s)
∂ci (s) =

(
1− βi

) (
V i (s)

) 1
ψi
(
ui (s)

)− 1
ψi
∂ui (s)
∂ci

∂V i (s)
∂V i (s′) = βi

(
V i (s)

) 1
ψi

(∑
s′

π
(
s′|s

) (
V i (s′))1−γi

) γi− 1
ψi

1−γi

π
(
s′|s

) (
V i (s′))−γi ,
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and where
dui|λ (s)
dθ

= dcit (s)
dθ

+
∂V i(s)
∂ni(s)
∂V i(s)
∂ci(s)

dnit (s)
dθ

.

The structure of Equation (OA5) immediately implies that dV i(s)
dθ can be expressed as a linear

transformation of instantaneous welfare gains, which in turn guarantees that dV i(s)
dθ can be written as

in Lemma (1). It is easiest to leverage equation (13) to compute normalized weights via state-prices
for any date and state, as follows:

qi
(
s′|s

)
=

∂Vi(s)
∂ci(s′)
∂V i(s)
∂ci(s)

=
∂V i(s)
∂V i(s′)

∂V i(s′)
∂ci(s′)

∂V i(s)
∂ci(s)

= βiπ
(
s′|s

)(V i (s′)
H (s)

) 1
ψi
−γi (

ci (s′)
ci (s)

)− 1
ψi

∂ui(s′)
∂ci

∂ui(s)
∂ci

,

where H (s) =
(∑

s′ π (s′|s)
(
V i (s′)

)1−γi) 1
1−γi . It is straightforward to define DS-weights for even

more general preferences, including preferences that are not time-separable or recursive, as we do
next.

D.2.2 General Non-separable Preferences

It is possible to consider general non-expected utility non-time separable preferences of the form (we
abstract from factor supply only for simplicity, the results extend straightforwardly to that case):

V i = U i
({
cit

(
st
)}

t,st

)
.

Individual lifetime welfare gains take the form

dV i

dθ
=
∑
t

∑
st

∂U i

∂cit (st)
dcit
(
st
)

dθ
.

From here it is evident that Lemma 1 applies, with normalized weights of the form

ωi =
∂W
∂V i

∑
t

∑
st

∂U i

∂cit(st)
1
I

∑
i
∂W
∂V i

∑
t

∑
st

∂U i

∂cit(st)

ωit =

∑
st

∂U i

∂cit(st)∑
t

∑
st

∂U i

∂cit(st)

ωit

(
st
)

=
∂U i

∂cit(st)∑
st

∂U i

∂cit(st)

.
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D.3 Multiple Goods/Factors

Here, we extend the result to economies with multiple goods/factors. We extend the baseline
environment by assuming individuals consume J ≥ 1 goods, indexed by j ∈ J = {1, . . . , J}, and
supply F ≥ 0 factors, indexed by f ∈ F = {1, . . . , F}, At all dates and histories. In this case,
preferences are given by

V i =
∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
uit

({
cijt

(
st
)}

j
,
{
nift

(
st
)}

f
; st
)
, (Preferences)

where cijt
(
st
)
and nift

(
st
)
respectively denote the consumption of good j and the amount of factor

f supplied by individual i at history st.
In this case, individual lifetime welfare gains are given by

dV i

dθ
=
∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
λit

(
st
)
dV

i|λ
t

(
st
)
,

where

dV
i|λ
t

(
st
)

=
∑
j

∂uit(st)
∂cijt

λit (st)
dcijt

(
st
)

dθ
+
∑
f

∂uit(st)
∂nift

λit (st)
dnift

(
st
)

dθ
,

which generalizes equation (6) in the text. Given this, Proposition 1 and all the other results follow
straightforwardly.

D.4 Perturbations to Probabilities

In this section, we describe how to use DS-weights in environments in which policy changes affect
probabilities. Starting from Equation (4), we can express dV i

dθ as

dV i

dθ
=
∑
t

(
βi
)t∑

st

(
πt
(
st
∣∣ s0
)(∂uit (st)

∂cit

dcit (st)
dθ

+ ∂uit (st)
∂nit

dnit (st)
dθ

)
+ dπt (st| s0)

dθ
ui
(
cit
(
st
)
, nit
(
st
)))

.

Hence, the definition of ΞRD and ΞIS apply unchanged, with the addition of the new term that
includes how the change in probabilities impacts lifetime and date t welfare gains, respectively. The
split between aggregate efficiency and risk-sharing now includes a third term that takes the form

∑
t

ωt
∑
i

∑
st

ζit (s) dπt
(
st
∣∣ s0
)

dθ
, where ζit = ui

(
cit
(
st
)
, nit

(
st
))

∑
st πt (st| s0) ∂u

i
t(st)
∂cit

.

Since
∑
st
dπt( st|s0)

dθ = 0, a stochastic decomposition of this additional term can be written in terms

of Covst
[
ζit ,

dπt( st|s0)
dθ

]
.
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D.5 Zeros

D.5.1 Zero Weights

In the body of the paper, we exclusively consider SWFs in which ∂W
∂V i

> 0, and implicitly, since we
assume that individual marginal utilities of consumption are strictly positive at all times, normalized
dynamic and stochastic weights such that ωit > 0 and ωit

(
st
)
> 0. Here, we present a generalized

decomposition that accommodates normalized weights to be zero for particular individuals, dates,
or histories. To allow for this possibility, we must appropriately define the set of individuals over
which sums and covariances are computed.19

Formally, a normalized welfare assessment takes the form:

dW λ

dθ
=
∑
i

ωi
dV i|λ

dθ
=

∑
i|ωi>0

dV i|λ

dθ︸ ︷︷ ︸
ΞE

+CovΣ
i|ωi>0

[
ωi,

dV i|λ

dθ
,

]
︸ ︷︷ ︸

ΞRD

,

where CovΣ
i|ωi>0

[
ωi, dV

i|λ

dθ

]
=
∑
i I
[
ωi > 0

]
Covi|ωi>0

[
ωi, dV

i|λ

dθ

]
, where I [·] denotes an indicator, and

where ωi =
∂W
∂V i

λi

1∑
i
I[ωi>0]

∑
i|ωi>0

∂W
∂V i

λi
. In this case, both efficiency and redistribution exclusively account

for the lifetime welfare gains of those individuals for whom ωi > 0. Following the same steps as in
the baseline case, the efficiency component can be expressed as

ΞE =
∑
i|ωi>0

dV i|λ

dθ
=
∑
t

∑
i|ωi>0

ωit
dV

i|λ
t

dθ
=
∑
t

ωt
∑

i|ωi,ωit>0

dV
i|λ
t

dθ
+
∑
t

ωtCovΣ
i|ωi,ωit>0

[
ωit
ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸

ΞIS

,

where ΞAE =
∑
t ωtΞAEt and ΞRS =

∑
t ωtΞRSt with

∑
i|ωi,ωit>0

dV
i|λ
t

dθ
=
∑
st

∑
i|ωi,ωit>0

ωit
(
st
) dV i|λt (st)

dθ

=
∑
st

ωt
(
st
) ∑
i|ωi,ωit,ωit(st)>0

dV
i|λ
t (st)
dθ︸ ︷︷ ︸

ΞAEt

+
∑
st

ωt
(
st
)
CovΣ

i|ωi,ωit,ωit(st)>0

[
ωit (st)
ωt (st) ,

dV
i|λ
t (st)
dθ

]
︸ ︷︷ ︸

ΞRSt

,

19We repeatedly use the fact that

∑
i

xiyi = 1
I+

∑
i|xi>0

xi
∑
i|xi>0

yi +
∑
i|xi>0

xi − 1
I+

∑
i|xi>0

xi

yi − 1
I+

∑
i|xi>0

yi

 ,

where I+ =
∑

i
I
[
xi > 0

]
.
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where ωt =
∑
i|ωi,ωit>0 ω

i
t and ωt

(
st
)

=
∑
i|ωi,ωit,ωit(st)>0 ω

i
t

(
st
)
, and where

CovΣ
i|ωi,ωit>0

[
ωit
ωt
,
dV

i|λ
t

dθ

]
=
∑
i

I
[
ωi, ωit > 0

]
Covi|ωi,ωit>0

[
ωit
ωt
,
dV

i|λ
t

dθ

]
.

CovΣ
i|ωi,ωit,ωit(st)>0

[
ωit (st)
ωt (st) ,

dV
i|λ
t (st)
dθ

]
=
∑
i

I
[
ωi, ωit, ω

i
t

(
st
)
> 0
]
Covi|ωi,ωit,ωit(st)>0

[
ωit (st)
ωt (st) ,

dV
i|λ
t (st)
dθ

]
.

In this case, only individuals with positive dynamic or stochastic weights enter into ΞAE , ΞRS , and
ΞIS .

It is worth highlighting that Proposition 2a) no longer holds when ωi = 0 for individuals. For
instance, a dictator who exclusively cares about individual i = 1, attributes all welfare gains to the
efficiency component (actually ΞAE) for individual 1, but the efficiency component for such a dictator
is different from the efficiency component of a utilitarian planner or any other welfarist planner who
puts strictly positive weight on all individuals. Propositions 2b) and c), as well as Propositions 4, 5,
and Proposition 6a) through d) still hold, but Proposition 6e) also fails.

The central takeaway from these results is that the welfare decomposition must be interpreted
only for the individuals for positive weights when i) planners completely disregard the welfare gains
by specific individuals, or ii) individuals do not value at all welfare gains at particular dates or states.
For instance, the redistribution component for a planner who exclusively cares about individuals i = 1
and i = 2 is exclusively based on the lifetime welfare gains of these two individuals, disregard the
rest. The same logic applies to the remaining terms of the decomposition.

D.5.2 Zero Welfare Gains

One may be tempted to also condition the covariance decomposition on the welfare gains terms to
be non-zero, e.g. dV i

dθ 6= 0, but this would lead to erroneous conclusions. For instance, it may be

that dV i|λ

dθ = 0 when dV
i|λ
t
dθ 6= 0 or dV

i|λ
t (st)
dθ 6= 0, which would yield incorrect results. An implication

of always considering all individuals with ωi > 0, even when dV i|λ

dθ = 0, is that ΞRD, as well as
the split of the efficiency among its three constituents will depend on the normalized weights of all
individuals in the economy, including those unaffected directly by the perturbation. However, the
efficiency component as a whole will not.

D.6 Other considerations

Idiosyncratic/Aggregate States In recursive economies with idiosyncratic (and potentially
aggregate) states (i.e., Aiyagari or Krusell-Smith style economies) individuals can be ex-ante
heterogeneous at the time of making a welfare assessment for two different reasons. First, individuals
can be heterogeneous ex-ante (e.g., individuals can have different time-invariant preferences or
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face shocks that come from different distributions). Second, individuals can be heterogeneous ex-
post (e.g., individuals can have different endowments or asset holdings at the time of the welfare
assessment, even though they face identical problems starting from a given idiosyncratic state). This
distinction is important to interpret correctly some of the results in this paper. For instance, 6d)
only applies when all individuals are identical because of predetermined reasons and when they all
have the same initial state. Formally, ex-ante heterogeneity of either form is captured by the index
i in this paper. It is possible to further refine the composition in environments that differentiate
between idiosyncratic and aggregate states along the lines of section E.

Continuum of Individuals, Continuous Time, Continuum of States In order to highlight
the differences between averages and signs, we have considered an environment with countable
individuals, dates, and histories. It is straightforward to extend the results to environments with a
continuum of individuals, continuous time, and a continuum of histories. In fact, earlier versions of
this paper included examples of all three cases.

Non-differentiabilities It is possible to generalize the results to environments in which lifetime
or instantaneous utilities are not differentiable. For lifetime utilities, it is necessary to consider
global assessments, as described in Section F.3. For instantaneous utilities, it is typically possible
to incorporate non-differentiabilities using Leibniz rule — see Dávila and Goldstein (2023) for an
application.

E Extensions: Subdecompositions and Alternative
Decompositions

In this section, we describe how to further decompose the components of the welfare decomposition
introduced in this paper. At times, we refer to two properties of covariances:

CovΣ
i

[
xi, yizi

]
= Ei

[
yi
]
CovΣ

i

[
xi, zi

]
+ Ei

[
zi
]
CovΣ

i

[
xi, yi

]
+
∑
i

[(
xi − Ei

[
xi
]) (

yi − Ei
[
yi
]) (

zi − Ei
[
zi
])]

(OA6)

CovΣ
i

[
xi, yi

]
=
∑
i

[
Covi

[
xi, yi | zi

]]
+ CovΣ

i

[
Ei
[
xi | zi

]
,Ei

[
yi | zi

]]
, (OA7)

where X, Y , and Z denote random variables. The first property is established in Bohrnstedt and
Goldberger (1969). The second is the Law of Total Covariance, and is standard. Figure OA-3
illustrates the decompositions introduced in Subsections E.4 and E.5.

It is worth highlighting that Lemma 1 implies that any decomposition of welfare assessments
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Welfare
Assessment

dWλ

dθ

Efficiency
ΞE

Redistribution
ΞRD
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ΞAE

Risk-sharing
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Intertemporal-sharing
ΞIS

Expected
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Efficiency
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Aggregate
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Intertemporal-sharing
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Weight
Concentration

ΞWC

Policy-weights
Coskewness

ΞPC

Expected
Redistribution

ΞER

Redistributive
Smoothing

ΞRM

Figure OA-3: Subdecomposition

Note: This figure illustrates how the welfare decomposition can be subdecomposed. Section E describes multiple ways
of subdecomposing the welfare decomposition and discusses alternative decompositions.

boils down to defining particular groupings of the triple sum:

dW λ

dθ
=
∑
i

ωi
∑
t

ωit
∑
st

ωit

(
st
) dV i|λ

t

(
st
)

dθ
.

E.1 Term Structure and Related Results

Here, we show that the welfare decomposition and each of its components has a term structure.
That is, it is possible to attribute welfare gains in the aggregate or for each of the components to
particular dates in the future. Formally, note that

dW λ

dθ
=
∑
t

ωt
dW λ

t

dθ
where dW λ

t

dθ
= ΞAEt + ΞRSt + ΞISt + ΞRDt , (OA8)

where

ΞAEt =
∑
st

ωt
(
st
)

ΞAEt
(
st
)

where ΞAEt
(
st
)

=
∑
i

dV
i|λ
t

(
st
)

dθ

ΞRSt =
∑
st

ωt
(
st
)

ΞRSt
(
st
)

where ΞRSt
(
st
)

= CovΣ
i

[
ωit
(
st
)

ωt (st) ,
dV

i|λ
t

(
st
)

dθ

]

ΞISt =
∑
st

ωt
(
st
)

ΞISt
(
st
)

where ΞISt
(
st
)

= CovΣ
i

[
ωit
ωt
,
ωit
(
st
)

ωt (st)
dV

i|λ
t

(
st
)

dθ

]

ΞRDt =
∑
st

ωt
(
st
)

ΞRDt
(
st
)

where ΞRDt
(
st
)

= CovΣ
i

[
ωi,

ωit
ωt

ωit
(
st
)

ωt (st)
dV

i|λ
t

(
st
)

dθ

]
.
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This formulation shows that a welfare assessment can be interpreted as the discounted sum, using
an aggregate discount factor — of date-specific welfare assessments, where each of these date-specific
assessments can be further decomposed in aggregate efficiency, risk-sharing, intertemporal-sharing,
and redistribution.

Transition vs. Steady State Welfare Gains. Equation (OA8) also allows us to decompose
the transition and steady-state impact of perturbations for aggregate assessments and each of the
components of the welfare decomposition. Formally, under the assumption that an economy reaches
a new steady-state at date T ?, it is possible to decompose welfare assessments into transition welfare
effects and steady-state welfare effects:

dW λ

dθ
=

T ?∑
t=0

ωt
dW λ

t

dθ︸ ︷︷ ︸
transition welfare gains

+
T∑

t=T ?
ωt
dW λ

t

dθ︸ ︷︷ ︸
steady-state welfare gains

.

It is worth highlighting that convergence to a new steady-state in terms of allocations does not
guarantee convergence of normalized weights. To facilitate comparisons, it seems more natural to
report the value of steady-state welfare effects expressed in permanent dollars starting at T ?, rather

than starting at date-0, that is:
∑T

t=T? ωt
dWλ

t
dθ∑T

t=T? ωt
.

Stochastic Structure. Finally note that it is possible to express a welfare assessment as

dW λ =
∑
t

ωt
∑
st

ωt
(
st
) (

ΞAEt
(
st
)

+ ΞRSt
(
st
)

+ ΞISt
(
st
)

+ ΞRDt
(
st
))
. (OA9)

This formulation shows that a welfare assessment can be interpreted as the discounted sum, using
aggregate time and stochastic discount factors — of date-specific welfare assessments, where each
of these date-specific assessments can be further decomposed in aggregate efficiency, risk-sharing,
intertemporal-sharing, and redistribution. This formulation allows us to attribute welfare gains due
to each of the components of the welfare decomposition to specific histories.

E.2 Individual Structure

Since each of the components of the welfare decomposition can be expressed as a triple-sum (over
individuals, dates, and histories), it is also possible to compute the individual contribution of
particular individuals to each of the components of the welfare decomposition. Formally, we can
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write

ΞAE =
∑
i

Ξi,AE where Ξi,AE =
∑
t

ωt
∑
st

ωt
(
st
) dV i|λ

t

(
st
)

dθ

ΞRS =
∑
i

Ξi,RS where Ξi,RS =
∑
t

ωt
∑
st

ωt
(
st
)(ωit (st)

ωt (st) − 1
)
dV

i|λ
t

(
st
)

dθ

ΞIS =
∑
i

Ξi,IS where Ξi,IS =
∑
t

ωt

(
ωit
ωt
− 1

)
dV

i|λ
t

dθ

ΞRD =
∑
i

Ξi,RD where Ξi,RD =
(
ωi − 1

) dV i|λ

dθ
,

where, by construction,
∑
i ξ
i,AE = 1 with ξi,AE = Ξi,AE

ΞAE ; and analogously for the other three
components.

E.3 Reallocation and Growth

In order to separate welfare gains due to reallocation from those due to changes in aggregates,
it may be useful to decompose how the changes in the level of consumption (analogously, factor
supply) are due to changes in the share of consumption across individuals or to changes in aggregate
consumption. Formally, we can define consumption and factor supply shares at a given history by
ψit,c

(
st
)

= cit(s)
ct(st) , and ψit,n

(
st
)

= nit(s)
nt(st)where ct

(
st
)

=
∑
i c
i
t

(
st
)
and nt

(
st
)

=
∑
i n

i
t

(
st
)
Hence, by

applying the product rule, we can express dcit(st)
dθ and dnit(st)

dθ as

dcit
(
st
)

dθ
=
dψit,c

(
st
)

dθ
ct
(
st
)

︸ ︷︷ ︸
=Reallocation

+ψit,c

(
st
) dct (st)

dθ︸ ︷︷ ︸
=Growth

dnit
(
st
)

dθ
=
dψit,n

(
st
)

dθ
nt
(
st
)

︸ ︷︷ ︸
=Reallocation

+ψit,n

(
st
) dnt (st)

dθ︸ ︷︷ ︸
=Growth

.

Hence, combining these definitions with the definition of instantaneous welfare gains in (6) or (OA10),
it is possible to subdecompose each of the components of the welfare decomposition into a term that
capture reallocation of consumption (factor supply) and a term that captures aggregate growth.

E.4 Stochastic Decompositions

As implied, for instance, by equation (OA9), each of the components of the welfare decomposition
includes aggregate valuation considerations. Here, we formalize this insight by further decomposing i)
the aggregate efficiency component into an expected aggregate efficiency component and an aggregate
smoothing component, and ii) the redistribution component into an expected redistribution and a
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redistributive smoothing component. Similar decompositions can be constructed for intertemporal-
sharing and risk-sharing.

Aggregate Efficiency. The aggregate efficiency component, ΞAE , can be decomposed into i) an
expected aggregate efficiency component, ΞEAE , and ii) an aggregate smoothing component, ΞAM .
Formally, at date t:

ΞAEt = Eπt(st)
[
ωt
(
st
)]

Eπt(st)

[∑
i

dV
i|λ
t

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞEAEt (Expected Aggregate Efficiency)

+Covπt(st)

[
ωt
(
st
)

πt (st) ,
∑
i

dV
i|λ
t

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞAMt (Aggregate Smoothing)

,

where ΞAE =
∑
ωtΞAEt . This decomposition is the standard asset pricing decomposition into the

expected payoff and a risk compensation. The expected aggregate efficiency component, ΞEAEt ,
captures the expected welfare gain across histories at a particular date. The aggregate smoothing
component, ΞAMt , captures whether aggregate efficiency gains take place in histories that a planner
values more in aggregate terms. It should be evident that aggregate smoothing, based on the
covariance of aggregate welfare gains across histories, is logically different from the risk-sharing
and intertemporal-sharing components, ΞRS and ΞIS , based on cross-sectional covariances.

The welfare gains associated with eliminating aggregate business cycles in a representative-agent
economy, (Lucas, 1987), arise from aggregate smoothing considerations. Finally, note it is possible
to generate a similar decomposition that captures the part of aggregate efficiency welfare gains that
are due to front-loading welfare gains, by using a covariance decomposition across dates.

Redistribution. Similarly to the aggregate efficiency component, the redistribution component
ΞRD is shaped by valuation considerations, in this case, at the individual level. Here, we decompose
ΞRD into i) an expected redistribution component, ΞER, and a redistributive smoothing component,
ΞRM . Formally, at date t:

ΞRDt = Covi

[
ωi,
∑
t

ωitEπt(st)
[
ωt
(
st
)]

Eπt(st)

[
dV

i|λ
t

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞER (Expected Redistribution)

+ Covi

[
ωi,
∑
t

ωitCovπt(st)

[
ωt
(
st
)

πt (st) ,
dV

i|λ
t

(
st
)

dθ

]]
︸ ︷︷ ︸

=ΞRM (Redistributive Smoothing)

.

This is, again, a standard asset pricing decomposition. The expected redistribution component,
ΞER, captures the welfare gains due to the expected welfare gains across histories at a particular
date. When individuals with a high individual weight have higher expected welfare gains, a planner
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attributes this to the expected redistribution component. The redistributive smoothing component,
ΞRM , captures whether individual welfare gains take place in histories that are more desirable for
individuals with a higher individual weight. That is, the redistributive smoothing component will be
non-zero for perturbations that smooth individual consumption for individuals with high individual
weights.

E.5 Alternative Cross-Sectional Decompositions

Here, we provide two alternative cross-sectional decompositions of the risk-sharing and intertemporal-
sharing components.

First, using equation (OA6), it is possible to decompose ΞIS into i) a raw intertemporal-sharing
component, ii) a weight concentration component, and iii) a policy-weights coskewness component,
as follows

ΞIS =
∑
t

ωt
∑
st

ωt
(
st
)
CovΣ

i

[
ωit
ωt
,
dV

i|λ
t

(
st
)

dθ

]
︸ ︷︷ ︸

=ΞRIS (Raw Intertemporal-sharing)

+
∑
t

ωt
∑
st

ωt
(
st
)
Covi

[
ωit
ωt
,
ωit
(
st
)

ωt (st)

]∑
i

dV
i|λ
t

(
st
)

dθ︸ ︷︷ ︸
=ΞWC (Weight Concentration)

+
∑
t

ωt
∑
st

ωt
(
st
)∑

i

(
ωit
ωt
− 1

)(
ωit
(
st
)

ωt (st) − 1
)(

dV
i|λ
t

(
st
)

dθ
− Ei

[
dV

i|λ
t

(
st
)

dθ

])
︸ ︷︷ ︸

=ΞPC (Policy-weights Coskewness)

.

The first component of ΞIS , ΞRIS , can be interpreted as an intertemporal-sharing component in
which welfare gains at date t are not risk-discounted (i.e., raw). Note that the history st determinant
of ΞIS relative to ΞRIS compare as follows

CovΣ
i

[
ωit
ωt
,
ωit
(
st
)

ωt (st)
dV

i|λ
t

(
st
)

dθ

]
vs. CovΣ

i

[
ωit
ωt
,
dV

i|λ
t

(
st
)

dθ

]
,

where it is clear that intertemporal-sharing corrects welfare gains by risk through ωit(st)
ωt(st) , while raw

intertemporal-sharing does not. Hence, the remaining two components, ΞWC and ΞPC , precisely
capture the difference due to such risk correction.

The ΞWC component corrects for the fact that dynamic and stochastic weights are cross-
sectionally correlated. Even though one may consider including ΞWC in the aggregate efficiency
component, there are two good reasons not to do so. First, it would require knowledge of the cross-
section of the dynamic and stochastic weights, which goes against expressing the aggregate efficiency
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component exclusively as a function of aggregate statistics. Second, ΞWC = 0 when markets are
complete, which highlights that ΞWC relies on valuation differences across individuals.

The ΞPC component is based on the coskewness between dynamic and stochastic weights and
the instantaneous welfare gain. Coskewness is a measure of how much three random variables jointly
change. For instance, ΞPC could be non-zero even when Covi

[
ωit
ωt
,
ωit(st)
ωt(st)

]
= 0. Also, coskewness is

zero when the random variables are multivariate normal (Bohrnstedt and Goldberger, 1969), so it
relies on higher-order moments.20 ΞWC is also zero if one of ωit, ωit

(
st
)
, or dV

i|λ
t (st)
dθ is constant across

individuals.

F Extensions: Additional Results

In this section, we discuss additional results.

F.1 General Welfare Numeraires

In the body of the paper, we immediately adopt a triple of consumption-based welfare numeraires.
Here, we proceed to derive the counterpart of Lemma 1 for general welfare numeraires. The main
difference with the body of the paper is that we introduce a triple of normalizing factors (lifetime,
date, and instantaneous) to allow for general welfare numeraires: λi, λit, and λit

(
st
)
.

The first step is to express a welfare assessment as

dW

dθ
=
∑
i

∂W
∂V i

λi
dV i|λ

dθ
, where dV i|λ

dθ
=

dV i

dθ

λi

denotes individual lifetime welfare gains in units of the lifetime welfare numeraire, and where λi is
the normalizing factor — with units individual i utils

lifetime welfare numeraire — that allows us to express individual
lifetime welfare gains in a common unit. The only restriction when choosing the lifetime welfare
numeraire is that λi must be strictly positive for all individuals affected by the perturbation.

Next, to meaningfully compare welfare gains at particular dates or histories across individuals
in a common unit, we select date and instantaneous welfare numeraire for each date and history.
Formally, individual lifetime welfare gains in units of the lifetime welfare numeraire, dV i|λ

dθ , can be
expressed as

dV i|λ

dθ
=
∑
t

λit
λi

∑
st

(
βi
)t
πt
(
st
∣∣ s0
)
λit
(
st
)

λit

dV
i|λ
t

(
st
)

dθ
,

20These terms are likely to be important in models that emphasize higher moments of the distribution of risks (e.g.,
Guvenen, Ozkan and Song (2014)).
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where

dV
i|λ
t

(
st
)

dθ
=

∂uit(st)
∂cit

λit (st)
dcit
(
st
)

dθ
+

∂uit(st)
∂nit

λit (st)
dnit

(
st
)

dθ
(OA10)

denotes normalized instantaneous welfare gains at history st, expressed in units of the instantaneous
welfare numeraire, and where λit

(
st
)

is the instantaneous normalizing factor — with units
instantaneous individual i utils

instantaneous welfare numeraire at st — that allows us to express instantaneous welfare gains at history
st in a common unit at that history and λit is the date normalizing factor — with units

individual i utils
date welfare numeraire at t — that allows us to express welfare gains at all date-t histories in a common
unit at that date. The only restriction when choosing the date and instantaneous welfare numeraires
is that λit and λit

(
st
)
must be strictly positive for all individuals affected by the perturbation at a

particular date and history.
In the body of the paper, we assume that λi, λit and λit

(
st
)
are given by

λi =
∑
t

λit and λit =
∑
st

λit

(
st
)

and λit

(
st
)

= ∂uit
(
st
)

∂cit
, (OA11)

which ensures that ωit and ωit
(
st
)
define normalized discount factors and risk-neutral probabilities.

In general, the counterparts of the normalized individual, dynamic, stochastic weights in equations
(7), (8), and (9) for general welfare numeraires are

ωi =
∂W
∂V i

λi

1
I

∑
i
∂W
∂V i

λi
and ωit = λit

λi
and ωit

(
st
)

= βtπt
(
st|s0

)
λit
(
st
)

λit
,

where the interpretation of the weights as marginal rates of substitution is as in the body of the
paper, but now using different units.

More generally, the nominal unit (e.g., dollars) or particular commodities or bundles of
commodities may also be reasonable choices for welfare numeraires. An alternative choice of lifetime
welfare numeraire in models with a single consumption good is date-0 consumption, so λi = ∂ui0(s0)

∂ci0
.

In this case, the normalized stochastic weights remain unchanged, while the normalized individual
and dynamic weights take the form

ωi =
∂W
∂V i

∂ui0(s0)
∂ci0

1
I

∑
i
∂W
∂V i

∂ui0(s0)
∂ci0

and ωit =
∑
st β

tπt
(
st|s0

)
λit
(
st
)

∂ui0(s0)
∂ci0

.

The main difference with respect to using permanent consumption as the lifetime welfare numeraire
is that now the efficiency component is expressed in terms of willingness-to-pay at date 0. This may
be desirable in particular circumstances.

It is worth making three final remarks. First, note that welfare numeraires always exist: at worst,
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one could choose a bundle of all goods/factors with non-negative marginal utility at a given history,
date, or on a lifetime basis. Second, one could potentially pick different numeraires in different dates
or histories, but it seems natural to choose a consistent numeraire to yield easily interpretable results.
Finally, while the choice of welfare numeraires does not change the directional welfare assessment of
a welfarist planner, the interpretation of the elements of the welfare decomposition is contingent on
such choice.

F.2 Role of Transfers

Here, we explain how the ability to costlessly transfer resources across individuals impacts the
welfare decomposition. Formally, if a DS-planner has access to a set of transfers T ii

(
st
)
in units

of the instantaneous welfare numeraire (here assumed to be consumption), so that individual budget
constraints have the form

cit

(
st
)

= T ii

(
st
)

+ . . . .

it follows immediately that the social value of such transfer equals the DS-weight of individual at
that particular history:

dWDS

dT ii (st)
= ωiωitω

i
t

(
st
)

= ω̃it

(
st
)
.

When a planner can transfer resources costlessly across individuals, subject to
∑
i T

i
i

(
st
)

= 0, the
availability of transfers endogenously restricts the variation of DS-weights across different individuals.
For instance, a welfarist planner who can transfer resources freely across all individuals, at all dates
and histories will equalize the DS-weights across all individuals, at all dates and histories. Given
Proposition 5, this implies that this planner will only value aggregate efficiency. Similar conclusions
can be reached when a DS-planner only has access to a subset of transfers.

F.3 Global Assessments

The body of the paper focuses on marginal welfare assessments because marginal welfare gains can be
computed unambiguously — see e.g. Schlee (2013), which shows that consumer surplus, equivalent
variation, and compensating variation are identical for marginal changes in a classical demand setup.
However, it is important to understand how to make non-marginal welfare assessments.

Even for a single individual, there is no unambiguous approach to measure welfare gains or losses
for non-marginal changes in meaningful units (money-metric) — see e.g., Silberberg (1972) or Mas-
Colell, Whinston and Green (1995). This phenomenon is typically illustrated by the discrepancy
between consumer surplus, equivalent variation, and compensating variation in classic demand
theory. The same logic extends to aggregate welfare assessments and to the welfare decomposition.
Despite this hurdle, it is possible to make judicious global welfare assessments.
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In practice, it is possible to study global changes by parameterizing perturbations using a line
integral, as illustrated in Section 6. Assuming that policy changes can be scaled by θ ∈ [0, 1], where
θ = 0 corresponds to the status-quo and θ = 1 corresponds to a global non-marginal change, it is
possible to define a non-marginal welfare change as follows:

WDS (θ = 1)−WDS (θ = 0) =
∫ 1

0

dWDS (θ)
dθ

dθ,

where θ is an explicit argument of dWDS(θ)
dθ , defined as in (3) or (14). That is, by recomputing

dWDS(θ)
dθ or dWλ(θ)

dθ along a particular path, it is possible to come up with a social welfare measure
that is akin to consumer surplus, with the same logic applying to each of the components of the
welfare decomposition. While using different paths will typically yield different global answers to the
question of what are the gains from a global multidimensional perturbation, in practice it is often
possible to find monotonic paths of integration, as defined by Zajac (1979) and Stahl (1984). In that
case, there is no ambiguity on whether θ = 0 is socially preferred to θ = 1, or vice versa.

Two additional remarks are worth making. First, while the approach outlined here is the
easiest to implement, it is possible to follow Alvarez and Jermann (2004) to consider global
equivalent/compensating variation-like assessments for welfarist planners within the DS-weights
framework. This will only be valid for aggregate assessments, not necessarily each of the components
of the welfare decomposition.

Second, the potential for ambiguity of global assessments is not relevant if one is interested in
using DS-planners to solve optimal policy problems, since dWDS

dθ is unambiguously defined for any
policy perturbation. Hence, if there is a point at which dWDS

dθ = 0 given the set of policy instruments,
this will be a critical point and, under suitable second-order conditions, a local optimum. If there is
a single local optimum and it is possible to establish that the optimum is interior, this optimum will
be global. If there are multiple local optima, one could use the value of the SWF to rank them in
the welfarist case. So welfarist planners can unambiguously rank any two policies globally. Outside
of the welfarist case, one can look for monotonic paths of integration (Zajac, 1979; Stahl, 1984) to
rank different local optima, so it is only when this is not possible to find such paths that there may
be some global ambiguity when ranking two particular policies for DS-planners.21 In general, one
can choose a set of reasonable policy paths (e.g., linear paths or bounded paths) and compare the
predictions for the associated welfare assessments both in aggregate and for each of the components
of the welfare decomposition.

21Stahl (1984) proves that there always exist monotonic paths of integration in a classical demand context. While
a formal proof of the existence of such paths for the general framework considered here is outside of the scope of this
paper, there is no reason to believe this result cannot be extended to more general environments.
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F.4 Inequality and Bounds

Concerns related to inequality often take a prominent role when assessing the welfare impact of
policies. The welfare decomposition introduced in this paper highlights which particular forms of
inequality matter for the determination of welfare assessments and their components.

Formally, by using the Cauchy-Schwarz inequality — which states that |Cov [x, y]| ≤√
Var [x]

√
Var [y] — it is possible to provide bounds for ΞRS , ΞIS , and ΞRD based on the cross-

sectional dispersion of normalized weights and the welfare gains, as follows:

∣∣∣ΞRS∣∣∣ ≤∑
t

ωt
∑
st

SDΣ
i

[
ωit

(
st
)]
· SDΣ

i

[
dV i

t

(
st
)

dθ

]
∣∣∣ΞIS∣∣∣ ≤∑

t

SDΣ
i

[
ωit

]
· SDΣ

i

[
dV i

t

dθ

]
∣∣∣ΞRD∣∣∣ ≤ SDΣ

i

[
ωi
]
· SDΣ

i

[
dV i

dθ

]
,

where SDΣ
i [·] denotes a cross-sectional standard deviation, where the variance is computed in sum

form. This result shows that inequality considerations matter for the aggregate assessments of
policies via the cross-sectional dispersion of normalized or the impact of a perturbation by itself.
While cross-sectional standard deviations can bound the welfare effect of perturbations, the welfare
decomposition is a function of covariances.

These bounds are helpful in practice because they can be computed using univariate statistics,
i.e., cross-sectional standard deviations, and do not require the joint distribution of DS-weights
and normalized consumption-equivalent effects, which are necessary to compute cross-sectional
covariances (a multivariate statistic).

G Relation to Existing Work

G.1 Relation to Saez and Stantcheva (2016)

The notion of DS-planners introduced in Section 4 nests the generalized weight approach in Saez
and Stantcheva (2016) and extends it to dynamic stochastic environments. Formally, while that
paper considers welfare objectives that directly define the individual weight ωi, DS-planners also
define (potentially non-welfarist) dynamic and stochastic generalized weights, ωit and ωit

(
st
)
, for

each individual.22
22In general, unless they are based on a SWF, welfare assessments based on generalized individual weights (those

considered in Saez and Stantcheva (2016)) are non-welfarist, yet they are Paretian and non-paternalistic. Welfare
assessments based on generalized dynamic and stochastic weights (those considered in Section 4 of this paper) are
non-welfarist, and typically non-Paretian and paternalistic.

OA-27



Hence, DS-planners in i) static environments or ii) environments that exclusively feature
generalized individual weights (but welfarist dynamic and stochastic weights) can be interpreted
as special cases of the generalized weight approach in Saez and Stantcheva (2016). Although in that
second case, our results use a different choice of lifetime welfare numeraire: Saez and Stantcheva
(2016) naturally choose instantaneous consumption as their numeraire, but this choice is more subtle
in dynamic environments, as explained in Section F.1. DS-planners that feature generalized dynamic
and/or stochastic weights are not considered in that paper. It is also worth highlighting that their
paper does not feature any form of welfare decomposition, even for static environments, so every
result in Section 3 of this paper is unrelated to the results in Saez and Stantcheva (2016).

A central insight in Saez and Stantcheva (2016) is that by using (individual) generalized weights it
is possible to accommodate alternatives to welfarism, such as equality of opportunity, libertarianism,
or Rawlsianism, among others. Since our approach nests theirs, it can also accommodate these
possibilities. There is scope to integrate these alternatives into dynamic stochastic environments.

G.2 Relation to Lucas (1987) and Alvarez and Jermann (2004)

It is common in papers that make welfare assessments in dynamic stochastic environments to compute
welfare gains using consumption-equivalents, as in Lucas (1987), who measures the welfare gains
associated with a policy change — specifically, the welfare gains associated with eliminating business
cycles. Our approach, built using marginal arguments, connects directly to the results in Alvarez
and Jermann (2004), who provide a marginal formulation of the approach in Lucas (1987). While
the Lucas (1987) and Alvarez and Jermann (2004) approach is easily interpretable in representative
agent economies, it has the pitfall that consumption-equivalents cannot be meaningfully aggregated
when there are heterogeneous individuals. See, for instance, how Atkeson and Phelan (1994), Krusell
and Smith (1999), or Krusell et al. (2009) carefully avoid aggregating consumption-equivalent welfare
gains across different individuals.

To illustrate these arguments, here we consider a perturbation for a given individual i, who
could be a representative agent or not. We abstract from factor supply, for simplicity, and consider
preferences of the form

V i =
∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
))
.

We suppose that the consumption of individual i at date t and history st can be written as

cit

(
st
)

= (1− θ) cit
(
st
)

+ θcit

(
st
)
,

where both cit
(
st
)
and cit

(
st
)
are sequences measurable with respect to history st. The sequence

cit
(
st
)
can be interpreted as a given initial consumption path — when θ = 0 — and the sequence
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cit
(
st
)
can be interpreted as a final consumption path — when θ = 1. In the case of Lucas (1987),

θ = 1 corresponds to fully eliminating business cycles.
First, we compute the marginal gains from marginally reducing business cycles using a

multiplicative consumption-equivalent, as in Lucas (1987) and Alvarez and Jermann (2004). Next,
we compute the marginal gains using an additive consumption-equivalent.

Multiplicative Compensation. Lucas (1987) proposes using a time-invariant equivalent
variation, expressed multiplicatively as a constant fraction of consumption at each date and history
as follows

∑
t

(
βi
)t∑

st

πt
(
st
∣∣ s0
)
ui
(
cit
(
st
) (

1 + Λi (θ)
))

=
∑
t

(
βi
)t∑

st

πt
(
st
∣∣ s0
)
ui
(

(1− θ) cit
(
st
)

+ θcit
(
st
))

, (OA12)

where Λi (θ) implicitly defines the welfare gains associated with a policy indexed by θ. The exact
definition in Lucas (1987) corresponds to solving for Λi (θ = 1).23

Following Alvarez and Jermann (2004), the derivative of the RHS of Equation (OA12) is given
by ∑

t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
ui′
(
(1− θ) cit

(
st
)

+ θcit

(
st
)) dcit (st)

dθ
(OA13)

where dcit(st)
dθ = cit

(
st
)
− cit

(
st
)
.

Analogously, the derivative of the LHS of Equation (OA12) is given by

∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
ui′
(
cit

(
st
) (

1 + Λi (θ)
))
cit

(
st
) dΛi

dθ
. (OA14)

Hence, combining (OA13) and (OA14) and solving for dΛi
dθ , yields the marginal cost of business cycles,

as defined in Alvarez and Jermann (2004). Formally, we can express dΛi
dθ as

dΛi

dθ
=
∑
t

(
βi
)t∑

st πt
(
st
∣∣ s0
)
ui′
(
(1− θ) cit

(
st
)

+ θcit
(
st
)) dcit(st)

dθ∑
t (βi)t

∑
st πt (st| s0)ui′

(
cit (st) (1 + Λi (θ))

)
cit (st)

=
∑
t

∑
st

ω̃it

(
st
) dcit (st)

dθ
,

(OA15)
where DS-weights are given by

ω̃it

(
st
)

=
∑
t

(
βi
)t∑

st πt
(
st
∣∣ s0
)
ui′
(
(1− θ) cit

(
st
)

+ θcit
(
st
))

∑
t (βi)t

∑
st πt (st| s0)ui′

(
cit (st) (1 + Λi (θ))

)
cit (st)

. (OA16)

23Alternatively, one could define a compensating variation as∑
t

(
βi
)t∑

st

πt
(
st
∣∣ s0
)
ui
(
cit
(
st
))

=
∑
t

(
βi
)t∑

st

πt
(
st
∣∣ s0
)
ui
((

(1− θ) cit
(
st
)

+ θcit
(
st
)) (

1 + Λi (θ)
))

.
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Additive Compensation. Here, we would like to contrast the approach in Lucas (1987) to one
that relies on a time-invariant equivalent variation, expressed additively in terms of consumption at
each date and history as follows:

∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
ui
(
cit

(
st
)

+Ai (θ)
)

=
∑
t

(
βi
)t∑

st

πt
(
st
∣∣∣ s0
)
ui
(
(1− θ) cit

(
st
)

+ θcit

(
st
))
.

Following the same steps as above to find the counterpart of Equation (OA15), we find that

dAi

dθ
=
∑
t

(
βi
)t∑

st πt
(
st
∣∣ s0
)
ui′
(
(1− θ) cit

(
st
)

+ θcit
(
st
)) dcit(st)

dθ∑
t (βi)t

∑
st πt (st| s0)ui′

(
cit (st) +Ai (θ)

)
cit (st)

=
∑
t

∑
st

ω̃it

(
st
) dcit (st)

dθ
,

(OA17)
where DS-weights are given by

ω̃it

(
st
)

=
(
βi
)t
πt
(
st
∣∣ s0
)
ui′
(
(1− θ) cit

(
st
)

+ θcit
(
st
))

∑
t (βi)t

∑
st πt (st| s0)ui′

(
cit (st) +Ai (θ)

) . (OA18)

Comparison and Implications. We focus on comparing Equations (OA15) and (OA17) when
θ = 0 — similar insights emerge when θ 6= 0. When θ = 0, Equations (OA16) and (OA18) become

ω̃it

(
st
)

=
(
βi
)t
πt
(
st
∣∣ s0
)
ui′
(
cit
(
st
))

∑
t (βi)t

∑
st πt (st| s0)ui′

(
cit (st)

)
cit (st)

(multiplicative) (OA19)

ω̃it

(
st
)

=
(
βi
)t
πt
(
st
∣∣ s0
)
ui′
(
cit
(
st
))

∑
t (βi)t

∑
st πt (st| s0)ui′

(
cit (st)

) . (additive) (OA20)

Two major insights emerge from Equations (OA19) and (OA20). First, the DS-weights defined for
the additive case in Equation (OA20) exactly correspond to the product of the normalized dynamic
and stochastic weights for a welfarist planner, as defined in (8) and (9). Second, the denominator
of the DS-weights in the multiplicative case is multiplied by cit

(
st
)
at all dates and histories. This

captures the fact that the welfare assessment is computed as a fraction of consumption at each date
and history, not in units of the consumption good. The presence of cit

(
st
)
in the denominator is

what complicates the aggregation of welfare assessments using the Lucas (1987) approach.
While both Lucas (1987) and Alvarez and Jermann (2004) study representative-agent

environments, others have used a similar approach in environments with heterogeneity; see e.g.,
Atkeson and Phelan (1994), Krusell and Smith (1999), or Krusell et al. (2009), among many others.
However, as highlighted by these papers, a well-known downside of the Lucas (1987) approach is that
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it does not aggregate meaningfully because individual welfare assessments are reported as constant
shares of individual consumption. Our approach, implicitly based on an additive compensation,
allows for meaningful aggregation among heterogeneous individuals.

Relation to EV, CV, and CS. Finally, note that the analysis in this section illustrates how
the marginal approach relates to the conventional approaches in classic demand theory: equivalent
variation (EV), compensating variation (CV), and consumer surplus (CS). The approach of Lucas
(1987) and Alvarez and Jermann (2004), and the alternative version described in Footnote 23 are the
dynamic counterpart of compensating and equivalent variations, expressed in proportional terms, in
a dynamic stochastic environment. Hence, the analysis of this section shows that a DS-planner can
be used to operationalize the counterpart of all three notions — either proportionally or additively
— in dynamic stochastic environments. As expected, these considerations only matter away from
the θ = 0 case. However, the consumer surplus approach yields the most straightforward approach
to making global assessments, as explained in Section F.3.

G.3 Relation to Existing Welfare Decompositions

Our paper is not the first to introduce a decomposition of welfare assessments in different components.
In fact, most of the existing literature that applies welfare decompositions to specific environments
follows versions of the decompositions introduced by Benabou (2002) and Floden (2001). There
is also the more recent decomposition introduced by Bhandari et al. (2021). We discuss how our
approach is related to both of these next.

Benabou (2002)/Floden (2001). The Benabou (2002)/Floden (2001) approach is based on first
computing certainty-equivalent consumption levels for individuals and then building measures of
inequality from the distribution of such certainty-equivalents. The starting point for the Benabou
(2002)/Floden (2001) approach is the (incorrect) presumption that the welfarist approach cannot
distinguish the effects of policy that operate via efficiency, missing markets, and redistribution.
Benabou (2002) explicitly writes:

“I will also compute more standard social welfare functions, which are aggregates of
(intertemporal) utilities rather than risk-adjusted consumptions. These have the clearly
desirable property that maximizing such a criterion ensures Pareto efficiency. On the
other hand, it will be seen that they cannot distinguish between the effects of policy that
operate through its role as a substitute for missing markets, and those that reflect an
implicit equity concern.”

In this paper, we have shown that it is possible to distinguish — using standard Social Welfare
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Functions — the effects of policy that operate through efficiency, including in economies with missing
markets, and redistribution/equity. As Benabou (2002) points out, his approach may conclude that
Pareto-improving policies are undesirable: this can never occur for welfarist planners, as explained in
Section 3. It is only when considering non-welfarist planners — such as some DS-planners introduced
in Section 4 — that perturbations that individuals find Pareto-improving are undesirable for a
particular DS-planner. In those cases, our welfare decomposition is precise in the way in which such
departures take place.

In terms of properties, it is evident that the Benabou (2002)/Floden (2001) approach does not
satisfy Proposition 4a), in which we show that welfarist planners conclude that the risk-sharing
and intertemporal-sharing components are zero when markets are complete; Proposition 4b), in
which we show that welfarist planners conclude that intertemporal-sharing component is zero when
individuals can freely trade a riskless bond; and Proposition 2a), in which we show that different
welfarist planners exclusively disagree on the redistribution component, among others. The Benabou
(2002)/Floden (2001) approach is only invariant to preference-preserving transformations because it
is exclusively defined for environments in which all individuals have identical preferences.

Bhandari et al. (2021). The decomposition introduced by Bhandari et al. (2021) considers a
utilitarian planner with arbitrary Pareto weights αi, although it seems obvious to apply to general
Social Welfare Functions. In contrast to Benabou (2002)/Floden (2001), the approach of Bhandari
et al. (2021) is defined for general dynamic stochastic economies in which individuals may have
different preferences.

For simplicity, we consider a scenario in which there is a single consumption good. In this
environment, Bhandari et al. (2021) propose to first decompose the consumption of a given individual
at a given date and history as

cit

(
st
)

= C × wi ×
(
1 + εit

(
st
))
, (OA21)

where C captures aggregate lifetime consumption, wi captures the share of individual i’s consumption
relative to the aggregate and 1 + εit

(
st
)
captures any residual variation. While equation (OA21)

may resemble the triple of individual, dynamics, and stochastic weights introduced in Lemma
1, it is conceptually different. In particular, the decomposition in equation (OA21) decomposes
consumption, cit

(
st
)
, while our weights decompose social marginal valuations. Only heuristically,

the term wi in (OA21) can be mapped to our normalized individual weight, while 1 + εit
(
st
)
can be

mapped to both dynamic and stochastic weights.
Bhandari et al. (2021) then introduce a second-order Taylor expansion around a midpoint to
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write welfare differences (partially adopting the notation in that paper) as follows:

WB −WA '
∫
φiΓdi︸ ︷︷ ︸

agg. efficiency

+
∫
φi∆idi︸ ︷︷ ︸

redistribution

+
∫
φiγiΛidi︸ ︷︷ ︸

insurance

, (OA22)

where φi = αi
∑
t

∑
st
∂ui(st)
∂cit

cit
(
st
)
denotes quasi-weights — using the terminology in Bhandari et al.

(2021) — and γi is a measure of risk-aversion, −cit
(
st
) ∂2ui(st)

∂(cit)2 /
∂ui(st)
∂cit

, and where Γ = lnCB− lnCA,

∆i = lnwBi − lnwAi , and Λi = −1
2

[
Vari

[
ln cBi

]
− Vari

[
ln cAi

]]
. That paper decomposes WB −WA

into three terms as follows:

1 =
∫
φiΓdi

WB −WA︸ ︷︷ ︸
agg. efficiency

+
∫
φi∆idi

WB −WA︸ ︷︷ ︸
redistribution

+
∫
φiγiΛidi
WB −WA︸ ︷︷ ︸
insurance

. (OA23)

Bhandari et al. (2021) establish three properties of the decomposition in Equation (OA23): a) a
welfare change that affects aggregate consumption C but not {wi, εi}i is exclusively attributed to
aggregate efficiency; b) a welfare change that affects expected shares {wi}i but not C and {εi}i
is exclusively attributed to redistribution; c) a welfare change that affects {εi}i but not C and
{wi}i is exclusively attributed to insurance. The insurance component in Bhandari et al. (2021)
is heuristically related to the risk-sharing and intertemporal-sharing components in our paper.
Bhandari et al. (2021) also establish a fourth property, reflexivity, which our approach also satisfies.
These properties are conceptually the counterpart of Proposition 5a), since they consider properties
of a decomposition for particular perturbations. However, it should be evident that properties a), b),
and c) in Bhandari et al. (2021) neither imply nor are implied by the properties that we establish in
Proposition 5a). This occurs because properties a), b), and c) consider proportional changes while
Proposition 5a) considers changes in levels, with both the proportional and level approaches being
different but reasonable.24

The decomposition of Bhandari et al. (2021) does not have a counterpart to Propositions 4 and
5. That is, it is possible to consider complete market economies in which the decomposition of

24Note that by writing cit
(
st
)

= C × wi ×
(
1 + εit

(
st
))
, we can express dcit(st)

dθ
as follows:

dcit
(
st
)

dθ
= dC

dθ
× wi ×

(
1 + εit

(
st
))

+ C × dwi
dθ
×
(
1 + εit

(
st
))

+ C × wi ×
d
(
1 + εit

(
st
))

dθ
.

In this case, even when dwi
dθ

= d(1+εit(st))
dθ

= 0, a change in dC
dθ

, by virtue of being proportional to existing consumption,

does not imply a uniform change in dcit(st)
dθ

across individuals, dates, and histories. A similar logic applies to changes

in dwi
dθ

and dεit(st)
dθ

. More generally, the decompositions yield different conclusions. For instance, the decomposition
in Bhandari et al. (2021) attributes welfare gains associated to smoothing business cycles in a representative agent
economy — as in Lucas (1987) — to insurance, while our decomposition attributes such gains to the aggregate insurance
subcomponent of aggregate efficiency.
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Bhandari et al. (2021) attributes welfare changes to their insurance component. More importantly,
it follows from (OA23) that changing the Pareto weights αi that a utilitarian planner assigns to
an individual or simply multiplying the lifetime utility of a single individual by a constant factor
— a preference-preserving transformation that has no impact on allocations — will change all
three elements (aggregate efficiency, redistribution, insurance) of the decomposition introduced by
Bhandari et al. (2021). Formally, it follows from the definition of φi above that a change in αi or
a linear transformation of utilities will change φi and consequently each of the three elements on
the right-hand side of Equation (OA22). Critically, WB −WA in Equation (OA22) (as well as φi)
is expressed in utils, not consumption units or any other common numeraire.25 Hence, changes in
Pareto weights or utility transformations directly affect all the components of the decomposition,
including aggregate efficiency and insurance in Equation (OA23).

25Bhandari et al. (2021) explain how WB −WA is measured in utils as follows:
“Quasi-weights {φi}i convert percent changes {Γ,∆i,Λi}i that into a welfare change WB−WA, measured
in utils.”
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