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Introduction

Dynamic programming is widely used in economic applications that feature dynamic optimization
problems. Its numerical implementation usually employs uniform grids, which suffer from the
curse of dimensionality. Regular sparse grids help overcome this challenge and have already
gained some popularity in economics, e.g., following Smolyak (1963)’s construction principle. It is
adaptive sparse grids, however, that promise maximal efficiency by refining the grid to best suit
the underlying economic application, placing grid points where increased resolution is valuable
and removing them elsewhere.

In this paper, we forge a new approach to dynamic programming in continuous time lever-
aging adaptive sparse grids. Our starting point is a negative result: In continuous time, dynamic
programming is based on the solution of differential equations. And the standard finite-difference
method—used to discretize differential equations on uniform grids—breaks down on sparse grids.
We develop a new value function iteration algorithm—based on a sparse finite-difference method—and
generalize continuous-time dynamic programming to a broad class of non-uniform grids. We show
that the versatility of adaptive sparse grids in particular makes them well-suited to tackle a wide
range of economic problems that feature high-dimensional state spaces, occasionally-binding con-
straints, overlapping generations, kinks and non-convexities, discrete choice, free boundaries, and
dynamic games. Our applications showcase that sparse grid dynamic programming substantially
outperforms the standard approach in each case. A code repository accompanies this paper, which
provides a general-purpose library for continuous-time dynamic programming on adaptive sparse
grids and features code and tutorials for many applications across several fields of economics.

The protagonists of this paper are grids. In numerical analysis, a grid discretizes the domain
of a function or the state space of an economic application. We focus on three classes of differently
structured grids: Uniform grids feature regularly spaced nodes. In higher dimensions, they are
constructed as the full tensor product of one-dimensional grids. Uniform grids consequently suffer
from the curse of dimensionality, as the number of grid points associated with the full tensor
product grows exponentially. Sparse grids aim to remove grid points, i.e., restrict the full tensor
product, without compromising numerical accuracy. They emerge from a cost-benefit analysis that
judges the value of each grid point in terms of its marginal contribution to the accuracy of function
approximations. Regular sparse grids are efficient from the ex-ante perspective of accurately
representing an entire class of functions, e.g., all functions that are continuously differentiable.
They remain agnostic about the details of a specific economic problem. Adaptive sparse grids, on
the other hand, use such information to locally refine the grid, placing nodes where the economic
application benefits from increased resolution and removing them elsewhere. In particular, we
develop a value function iteration algorithm that automates local grid adaptation based on the
residual approximation error in the value function.

In continuous time, dynamic programming gives rise to differential equations that characterize

1



the policy and value functions associated with the dynamic optimization problem—the analog
of the Bellman equation in discrete time. The most popular approach to solve these equations
numerically is based on finite-difference methods. On a uniform grid with mesh size h, the first-
order derivative f 0(x) can be discretized in terms of the function values at a grid point x and its
right neighbor x+. By construction, the distance between two neighboring nodes on a uniform
grid is h, with x+ = x + h, and so the approximation of the derivative becomes f (x+h)� f (x)

h , which
converges to the true mathematical derivative f 0(x) as the grid becomes finer. A finite-difference
method that satisfies this property is called consistent.

On sparse grids, however, it is no longer the case that the distance between a grid point x and
its direct right neighbor x+ is of order h. In fact, sparse grids of arbitrary resolution generically
contain grid points whose direct neighbors are far away. As a result, discretizing derivatives using
the standard finite-difference method, with only looks at a grid point’s direct neighbors, no longer
leads to consistent approximations. It is consequently not possible to numerically solve continuous-
time dynamic programming problems on sparse grids using the standard finite-difference method.

In this paper, we develop a sparse finite-difference method to overcome this challenge. This
method draws on information from a d-dimensional ball around the grid point in question, which
we show leads to a consistent discretization of derivatives. In fact, we prove that the sparse finite-
difference method is equivalent to interpolating onto exactly those points that would be used by
the standard finite-difference if the grid were uniform. This interpolation error itself is of order
O(h), and so the scheme overall is of order O(h) as well. Our discretization method consequently
takes the form Ej Dj Hj, where Dj is the standard finite-difference matrix in dimension j, and Ej

and Hj are easily computable projection matrices. We also develop a general method to handle
boundary conditions and show that the resulting boundary-adjusted finite-difference method
remains consistent.

Leveraging our sparse finite-difference method, we present a value function iteration algo-
rithm on adaptive sparse grids. Intuitively, the standard algorithm is augmented by an outer fixed
point, in which the algorithm automatically adapts the grid to increase (decrease) resolution where
the numerical approximation error in the value function remains large (small). Our algorithm starts
with a coarse grid and carries over the numerical solution of the value function from one outer
iteration to the next as an initial guess.

Use cases. We demonstrate the power and versatility of our approach in the context of many
applications, showcasing that adaptive sparse grids substantially outperform uniform and even
regular sparse grids. Section 5 of the main text presents five applications. In the repository
that accompanies this paper, we additionally develop code and provide pedagogical tutorials
for many dynamic programming applications drawn from several fields of economics, including
macroeconomics, asset pricing, and industrial organization.

Our applications are judiciously chosen to highlight the use cases for sparse grid dynamic
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programming. Adaptive sparse grids are powerful across a wide range of economic problems that
either feature high-dimensional state spaces or require localized grid resolution:

1. High dimensionality: Dynamic optimization problems on high-dimensional state spaces are
notoriously challenging to solve. On uniform grids, the curse of dimensionality makes the
numerical solution of problems with more than 10 state variables all but intractable. The
rapidly growing heterogeneous-agent literature again highlights the pertinence of this obsta-
cle: In dynamic general equilibrium models with rich heterogeneity, the high-dimensional
cross-sectional distribution of agents becomes part of the state space. In Section 5.1, we
illustrate the power of adaptive sparse grids in this context by globally solving a variant of the
Krusell and Smith (1998) model with a 14-dimensional distribution representation. Despite
the large state space, our value function iteration algorithm requires less than 5 minutes on a
personal computer.

2. Occasionally-binding constraints: Many economic applications feature occasionally-binding
constraints such as borrowing and collateral constraints, or the zero lower bound on monetary
policy. When agents face such constraints, their behavior often becomes highly sensitive
to, i.e., non-linear in, changes in fundamentals. Sparse grid methods excel by placing grid
points and adding resolution in the region of the state space where these constraints bind. We
illustrate this in Sections 5.2 through 5.4, which present variants of the standard incomplete
markets model in macroeconomics in the spirit of Huggett (1993) and Aiyagari (1994).

3. Kinks and non-convexities: When economic applications feature a locally non-linear solution,
i.e., when behavior becomes highly sensitive in a local region of the state space, solving the
problem on a uniform grid is highly inefficient. Using adaptive sparse grids allows us to
match the local grid resolution to the demands of the underlying application. We illustrate
their potency in the context of an Aiyagari (1994) economy with a non-convex capital income
tax schedule in Section 5.3. The resulting consumption policy function becomes locally
non-convex at the tax threshold and the value function features a kink. Our grid adaptation
algorithm automatically increases the grid resolution near the tax threshold, while leaving
the grid relatively coarse elsewhere.

4. Finite horizons: Many important economic problems feature finite horizons, including life-
cycle and overlapping generations models. Solving these models accurately often requires
high grid resolution near the endpoints of the time dimension. We show in Section 5.4 that
a life-cycle portfolio choice problem requires substantial localized resolution to accurately
characterize households’ behavior near the time of retirement or death.

5. Free-boundary problems: Economic applications with free boundary problems abound. We
show in Section 5.5 that adaptive sparse grids are powerful in this context for two reasons.
First, the value and policy functions often exhibit large gradients near the free boundary.
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Local grid refinement is therefore useful to place grid points close to the free boundary
while removing them elsewhere. Second, solving free boundary problem oftentimes does
not require characterizing agents’ behavior beyond the free boundary. In this case, our grid
adaptation algorithm automatically removes grid points in that region of the state space once
the free boundary is accurately pinned down. In Section 5.5 of the main text, we present the
well-known optimal stopping problem of a firm that chooses the time of plant closure. In our
code repository, we develop several applications featuring consumer and sovereign default.

6. Discrete-choice: Discrete-choice models are widely used in industrial organization and other
fields of economics. A rapidly expanding literature in macroeconomics focuses on household
finance, with interest in discrete home purchase and mortgage decisions. Historically, discrete-
time dynamic programming has been the method of choice to solve such problems. We show
how sparse grids can be leveraged to realize great efficiency gains in continuous-time discrete-
choice applications, where the analog of the discrete-time Bellman equation takes the form of
a Hamilton-Jacobi-Bellman variational inequality. We illustrate this by solving a variant of the
Ericson and Pakes (1995) model in continuous time, extended to feature a continuous quality
dimension. We also solve a household portfolio choice problem with a discrete housing
choice.

7. Dynamic games: In dynamic N-player games, the state variables of each of the N players
become part of the state space of every other player. Computing best-response strategies
therefore requires solving high-dimensional dynamic programming problems. Adaptive
sparse grids again excel by realizing substantial efficiency gains relative to uniform grids on
high-dimensional state spaces. In our repository, we solve the N-player game in a continuous-
time variant of the seminal Ericson and Pakes (1995) model of quality ladders under dynamic
oligopolistic competition.

Related literature. Following their introduction in a series of papers by Zenger (1991), Griebel
(1991), Bungartz (1992), and Griebel et al. (1992), sparse grids have become an active research
area in applied mathematics.2,3 These initial contributions focused especially on the finite-element
method to solve partial differential equations. Sparse grid methods were extended to the class
of finite-difference methods by Schiekofer (1998) and Griebel (1998). Schiekofer (1998) was first

2 Closely related ideas were discussed and used in the context of other problems much earlier. Babenko (1960)
discusses a similar approach—known as hyperbolic crosses—in the approximation of periodic functions based on
restrictions on Fourier coefficients. In his seminal contribution, Smolyak (1963) proposes a tensor product approach
that leads to efficient non-uniform grids in the context of numerical integration. “Smolyak-grids” have frequently been
employed in economics. For further details on these and related approaches such as Boolean methods (Delvos, 1982)
and discrete blending methods (Baszenski et al., 1992), we refer readers to Bungartz and Griebel (2004).

3 Sparse grid methods use function representations in the hierarchical basis (Faber, 1909). Yserentant (1986, 1992)
introduced the hierarchical (multi-grid) basis for the numerical solution of partial differential equations. Zenger (1991)’s
original definition of sparse grids is based on a generalization of Yserentant (1986)’s hierarchical basis to a tensor
product-based approach that allows for subspace splitting. Relative to previous work, Zenger (1991) defines sparse grids
formally as emerging from an a priori selection of approximating function subspaces based a multi-grid approach.
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to show that the standard finite-difference method, which leads to the consistent discretization
of partial derivatives on uniform grids, can fail on regular sparse grids. Schiekofer (1998)’s main
contribution was a consistency proof for a generalized finite-difference method on a particular class
of regular sparse grids.4 Koster (2002), Ruttscheidt (2018), and Garcke and Ruttscheidt (2019) have
proposed an alternative interpolation-based approach to solve differential equations on sparse grids
using finite-difference methods.5 Relative to this extensive body of work in applied mathematics,
this paper demonstrates the power of adaptive sparse grids in the context of continuous-time
dynamic programming applications in economics. Our approach builds on Schiekofer (1998)’s
original sparse finite-difference method. We present a value function iteration algorithm using
adaptive sparse grids, develop a general treatment of boundary conditions, extend the sparse
finite-difference consistency result to a broader class of sparse grids, and prove the equivalence
between Schiekofer (1998)’s construction and an interpolation stencil.

Our paper also builds on previous work that has leveraged sparse grids in economics. Krueger
and Kubler (2004) propose a computational method based on Smolyak sparse grids to solve
stochastic equilibria in OLG economies. Judd et al. (2014) use sparse grids together with a stochastic
simulation approach to solve a high-dimensional multi-country model. The seminal contribution of
Brumm and Scheidegger (2017) introduces adaptive sparse grids to economics. The main difference
from earlier work is that they rely on local basis functions rather than global ones, which allows for
adaptive grid refinement based on a measure of residual local approximation error. Schober (2018)
uses this method to solve a high-dimensional dynamic portfolio choice model. The main distinction
between these papers and ours is that we focus on continuous-time dynamic programming, which
requires the solution of (partial) differential equations. The application of sparse grid methods in
continuous time faces different challenges than in discrete time.

The first applications of continuous-time sparse grid methods in economics were in the area of
finance and option pricing. Pflüger (2010) and Heinecke et al. (2012) solve Black Scholes equations
for option pricing problems using an adaptive sparse grid finite-element method. Garcke and
Ruttscheidt (2019), building on Ruttscheidt (2018), solve a six-dimensional portfolio choice problem
in partial equilibrium. Schaab (2020) uses the adaptive sparse grid method developed in this paper
to globally solve a heterogeneous-agent New Keynesian model with aggregate uncertainty and an
occasionally-binding zero lower bound consdtraint.

4 Schiekofer (1998)—as well as subsequent work—also discusses and numerically explores the stability and con-
vergence properties of the resulting sparse finite-difference schemes. Formal stability and convergence results have
proven elusive, however. Proving general results on the convergence of sparse finite-difference schemes in the context of
viscosity solutions has been challenging because the Barles and Souganidis (1991) monotonicity condition is generally
not satisfied. Hemker (2000) points out that interpolation on sparse grids does not generally satisfy monotonicity. Garcke
and Ruttscheidt (2019) show that even in the case of concave, monotonically increasing functions, interpolation on sparse
grids is not guaranteed to be monotone. In particular, they show that when the hierarchical representation of a concave
and monotonically increasing function leads to negative hierarchical coefficients, the resulting sparse grid interpolation
may be non-monotone.

5 The literature on sparse grids in applied mathematics has since rapidly grown. The power of sparse grid methods
has been demonstrated in the context of numerous applications, including differential equations, integration and
quadrature, dimensional adaptation, integral equations, data mining, and uncertainty quantification among others.
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Layout. The rest of this paper proceeds as follows. Section 1 introduces hierarchical basis functions
and shows how to construct sparse grids. Section 2 reviews the standard approach to continuous-
time dynamic programming on uniform grids, setting the stage for our discussion of sparse grids.
Section 3 then shows that this standard approach breakds down on sparse grids and introduces a
sparse finite-difference method to solve the differential equations that emerge from continuous-time
dynamic programming. Section 3 also presents a value function iteration algorithm on adaptive
sparse grids and concludes with a discussion of monotonicity and convergence. Section 4 develops
a general treatment of boundary conditions. Sections 5 and 6 respectively present our main
applications and introduce the SparseEcon code repository that accompanies this paper. Finally,
Section 7 concludes.

1 Function Approximations, Hierarchical Basis, and Sparse Grids

Our object of interest is a real-valued function f : W ! R that represents the solution of an economic
model. In this section, we consider as our domain the d-dimensional hypercube W = [0, 1]d and
start by studying the one-dimensional case with d = 1 for ease of exposition. Our goal is to
approximate f on some grid G ⇢ W that discretizes the domain. Denoting by l the level and i the
index, we construct a grid point as the numeric value xl,i = i · 2�l . Grid G is a collection of J such
grid points and may be represented as a J ⇥ d matrix. We set the local mesh size to hl = 2�l . At a
given level l, the maximum index that can be active is 2l � 1.6

A natural question is whether we can find the most efficient grid structure for approximating
a given class of functions. Sparse grids emerge as the answer to this question (Zenger, 1991). To
formalize this argument, we develop a cost-benefit analysis that determines the relative value
of grid points and allows us to compare one grid to another. Intuitively, a grid is efficient if
achieving a desired accuracy in approximating f is possible with relatively few grid points, and
the value of a single grid point is then its marginal contribution to this approximation accuracy.
Formally, approximation error corresponds to the distance between f and its approximation in
an underlying function space V , to which f belongs. Since the approximation of f on grid G is
typically represented as a J ⇥ 1 vector of function values, however, our first task is to associate this
vector with an interpolant in V . In Sections 1.1 and 1.2, we develop a basis function representation
that allows us to interpolate the approximation of f onto points in the domain W that are not
members of G. After formally characterizing the value of a grid point, we show in Section 1.3 how
sparse grids systematically remove grid points whose marginal contribution is low and add them
where the local function approximation error remains large.

6 We adopt the construction principle of dyadic grids.
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(a) l = 1 and I1 = {1} (b) l = 2 and I2 = {1, 2, 3} (c) l = 3 and I3 = {1, . . . , 7}

Figure 1: Nodal basis functions

Note. Figure 1 displays the nodal basis functions associated with levels l 2 {1, 2, 3} and illustrates the grid construction
principle adopted in this paper. At level l = 1 in panel (a), the nodal index set is simply I1 = {1} and thus associated with
a single grid point, x1,1 = i · 2�l = 0.5. The nodal basis function f1,1(x) is centered on x1,1 and has symmetric support on
[0, 1]. At higher levels l, illustrated in panels (b) and (c), the nodal index set is defined as Il = {i 2 N | 1  i  2l � 1}.
Each grid point xl,i is associated with a nodal basis function that is centered on it and has symmetric support over
x 2 [xl,i � hl , xl,i + hl ].

1.1 The Approximation Space of Piecewise Linear Interpolants

We focus on linear interpolation and use piecewise linear hat functions as basis functions.7 Any
one-dimensional symmetric hat function can be defined via translation and dilation of the mother
hat function f as

fl,i(x) = f

✓
x � ihl

hl

◆
, where f(x) =

8
<

:
1 � |x| for x 2 [�1, 1]

0 otherwise
(1)

for all x 2 [0, 1]. The subscript (l, i) indicates that the hat function is centered around the grid point
xl,i.

We associate a collection of grid points or basis functions with an index set. In particular, we
define the nodal index set of level l as Il = {i 2 N | 1  i  2l � 1}. The set of nodal basis functions

7 Most work on sparse grids is based on d-dimensional piecewise-linear basis functions. Bungartz (1992) and
Bungartz and Griebel (1999) show that, for tensor products based on the 1-dimensional piecewise linear basis function, it
can be proven that the relative contribution of basis function coefficients in a hierarchical representation decays at rate
2�2|l|1 . Subsequent research has extended the sparse grid apparatus to a wide range of basis functions. Bungartz (1998)
introduces the hierarchical Lagrange interpolation approach, which uses hierarchical bases of piecewise polynomials of
arbitrary degree, allowing one degree of freedom per node. This results in a higher order of approximation. Bungartz
and Griebel (2004) show that using polynomial basis functions of degree p and optimizing the relative contributions of
the associated approximating subspaces results in an interpolation error of order O(hp+1

n · | log2 hn|d�1) in the L2 and L•
norms. The interpolet family introduced by Deslauriers and Dubuc (1989) represents an alternative set of higher-order
basis functions that can be leveraged in the context of sparse grids. Bungartz and Griebel (2004) discuss how to use
the 1-dimensional higher-order interpolet function—instead of the hat functions we use here—in the tensor product
construction of hierarchical subspaces and sparse grids. While higher-order approaches such as hierarchical Lagrange
interpolation or interpolets can leverage stricter regularity assumptions on the underlying function to achieve better
approximation rates, they are not stable in the context of subspace splitting in the sense of Oswald (2013). The family of
basis functions based on wavelets and prewavelets (Daubechies, 1992) can be used to circumvent this issue. For details
see Bungartz and Griebel (2004).
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(a) Function values al,i = f (xl,i) (b) Piecewise linear interpolation of f (x) on G

Figure 2: Interpolation in the nodal basis

Note. Figure 2 illustrates the nodal basis function representation of the piecewise linear interpolant fl(x) that approx-
imates f (x) = 4

5 (sin(px) + 1
2 sin(2px)) (dashed black line) on grid of level l = 3, G = {x3,i | i 2 I3}. Panel (a) again

displays the collection of hat functions that comprise the nodal basis of level l = 3, each now weighted by the function
values a3,i = f (x3,i). Panel (b) also plots the piecewise linear interpolant f3(x) = Âi2I3 a3,i f3,i(x) (solid blue line).

of level l is then given by {fl,i(x) | i 2 Il and x 2 W}. We call the span of this set of basis functions
the nodal basis. Figure 1 displays the hat functions {fl,i(x)} for levels 1, 2, and 3 and illustrates the
grid construction principle we adopt in this paper. For example, grid point x3,2 in panel (c) takes
the value x3,2 = i · 2�l = 2 · 2�3 = 0.25. The associated hat function f3,2(x) is centered on x = 0.25
and has symmetric support over x 2 [x3,2 � 2�l , x3,2 + 2�l ] = [0.125, 0.375]. Each node xl,i in grid G
can therefore be associated with a hat function fl,i(x) that is centered on it.

Interpolation. We can fit function f on grid G by evaluating it at all the grid points, and it will be
notationally convenient to denote by al,i = f (xl,i) the function values of f on grid G. We can use
the hat functions comprising the nodal basis for interpolation by using the function values al,i as
basis function coefficients. That is, we can approximate f with the piecewise linear interpolant fl

on grid G of level l, i.e.,
f (x) ⇡ fl(x) = Â

i2Il

al,i fl,i(x). (2)

Crucially, the interpolant fl associated with grid G is now also a member of the underlying function
space V , and we can formalize the resulting approximation error as the distance between f and fl

in V according to some norm k · k.
Since we use the nodal index set Il to construct this basis function representation, we also refer

to equation (2) as the nodal representation of the piecewise linear interpolant fl . Figure 2 illustrates
piecewise linear interpolation in the nodal basis. In panel (a), we again plot the nodal hat functions
associated with a grid of level l = 3 and scale each hat by its associated function value al,i. The blue
line in panel (b) depicts fl(x) using the nodal basis representation (2). The residual approximation
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Figure 3: Tensor-product construction of d-piecewise linear basis functions

Note. Figure 3 illustrates the tensor product construction of d-piecewise linear hat functions in two dimensions according
to equation (4). In particular, the figure displays the hat functions comprising the nodal basis of level l = (2, 2), associated
with the nodal index set Il = {(i1, i2) | ik 2 N, 1  ik  3, for k 2 {1, 2}}.

error is the distance between the black-dotted line representing f (x) and its interpolant fl(x).

Approximation spaces. The basis of hat functions we have developed implicitly induces an
approximation space of piecewise linear functions,

Vl = span
n

fl,i(x) | i 2 Il and x 2 W
o

. (3)

For l < •, Vl ⇢ V . That is, approximating f 2 V with its piecewise linear interpolant fl 2 Vl

incurs approximation error. In particular, for any given l < •, Vl is finite-dimensional while V is
infinite-dimensional.

Approximating f on a grid G can therefore equivalently be thought of as solving for an
interpolant in an approximation space. Any grid is consequently associated with the approximation
space it induces when endowed with a particular set of interpolating basis functions. Our focus in
this paper is on hat functions and the resulting d-piecewise linear approximation (or interpolating)
spaces. Crucially, associating the vector of function values al,i = f (xl,i) with the piecewise linear
interpolant fl now enables us to characterize the distance between f and fl in the underlying space
V , which formalizes the approximation accuracy of grid G.

Tensor product construction in higher dimensions. It is straightforward to extend our discussion
to the multi-dimensional case with d > 1 and W = [0, 1]d. We introduce the multi-indices l =

{l1, . . . , ld} and i = {i1, . . . , id} to represent the grid point xl,i = {xl1,i1 , . . . , xld,id} analogously
to the one-dimensional case. The local mesh size is h = 2�l . Il is the nodal index set, with
Il = {i | ik 2 N, 1  ik  2lk � 1, for all 1  k  d}. A d-dimensional grid G is again a collection
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(a) l = 3 and I3 = {1, . . . , 7} (b) Remove grid point x3,5

Figure 4: Nodal basis functions are not invariant to grid structure

Note. Figure 4 illustrates that the hat functions comprising the nodal basis associated with a grid change as the grid is
adapted. Panel (a) displays the symmetric hat functions that comprise the nodal basis associated with a uniform grid of
level l = 3. In panel (b), we remove grid point x3,5. The nodal basis associated with the adapted grid now features two
asymmetric hat functions whose respective neighbors changed.

of J grid points xl,i and may be represented as a J ⇥ d matrix.
We construct d-piecewise linear hat functions centered on grid point xl,i using a tensor product,

fl,i(x) =
d

’
k=1

flk ,ik(xk) (4)

where xk is the k-coordinate of x 2 [0, 1]d. We illustrate the tensor product construction principle in
Figure 3, which displays the set of two-dimensional nodal basis functions of level l = (2, 2).

1.2 The Hierarchical Basis

The nodal basis has two important drawbacks in the context of constructing sparse grids. First, it
is not straightforward to characterize the marginal contribution of a grid point and its associated
nodal basis function to the overall accuracy of the function approximation. Determining the
value of grid points is essential in order to both characterize the overall efficiency of a grid and
systematically refine a grid to make it more efficient.

Second, nodal basis functions are not invariant to the underlying grid structure, which we
illustrate in Figure 4. Panel (a) again plots the hat functions that comprise the nodal basis of
level l = 3. In panel (b), we remove the grid point x3,5 and plot the resulting hat functions. In
order to span the hole at x = 0.625, the two basis functions centered on 0.5 and 0.75 must be
extended asymmetrically to their respective new neighbors. Since our goal is to develop an efficient
procedure to systematically add grid points with large contributions and remove others, working
with basis functions that change whenever the grid is locally adapted is unappealing.
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(a) l = 1 and IH
1 = {1} (b) l = 2 and IH

2 = {1, 3} (c) l = 3 and IH
3 = {1, 3, 5, 7}

Figure 5: Hierarchical basis functions

Note. Figure 5 illustrates the multi-level construction principle of the hierarchical basis. At each level l, the hierarchical
space Wl is the span of those hat functions of level l that have odd indices; relative to the nodal basis of level l, those hat
functions with even indices are dropped. For example, the basis functions active in the hierarchical space W2 of level
l = 2 are f2,1(x) and f2,3(x) as depicted in panel (b); hat function f2,2(x) is dropped. The hierarchical basis of level l is
then the union of the hierarchical spaces of all lower levels, i.e., Wk for 1  k  l. The hierarchical basis owes its name to
this multi-level construction principle.

We now introduce the hierarchical basis and show that it addresses both concerns.8

Definition 1. (Hierarchical Basis / Hierarchical Spaces) The hierarchical basis of level l comprises the
set of piecewise linear hat functions

n
fk,i(x) | k  l, i 2 IH

l and x 2 W
o

where IH
l =

�
i 2 N | 1  i  2l � 1 and i odd

 
is the hierarchical index set. We define the hierarchical

space of level l as
Wl = span

n
fl,i(x) | i 2 IH

l and x 2 W
o

.

Figure 5 illustrates the multi-level construction principle of the hierarchical basis, to which it owes
its name. At level l = 1, the hierarchical space W1 is the span of the level 1 hat function f1,1(x), just
as in the nodal basis depicted in Figure 1. At level l = 2, however, the only basis functions active in
hierarchical space W2 are those with odd indices, i.e., f2,1(x) and f2,3. Relative to the nodal basis,
we drop the hat function f2,2(x). Similarly, at level l = 3, the hierarchical space W3 is spanned by
the basis functions of odd indices, namely {f3,i(x)} for i 2 IH

3 = {1, 3, 5, 7}. The hierarchical basis
of level l = 3 is then obtained by combining the hierarchical basis functions of all lower levels — in
other words, by taking the union of the hierarchical spaces Wk for k = 1, 2, 3.

We want to make several important remarks. First, the nodal and hierarchical bases span the
same function spaces. Formally, we have Vl =

L
kl Wk. That is, any function in the span of the

8 The hierarchical basis will also be at the heart of constructing a consistent finite-difference scheme on sparse grids,
as we show in Section 3. See for example Zenger (1991), Griebel (1998) and Bungartz and Griebel (2004), as well as more
recently Brumm and Scheidegger (2017) and Ruttscheidt (2018).
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nodal basis is also in the span of the hierarchical basis. This observation allows us to alternatively
use and switch between the nodal and hierarchical representations of functions.

Second, the hierarchical spaces Wl are disjoint. Suppose we take the union of two disjoint
hierarchical spaces, say Ṽ = W1

LW2. The resulting function space Ṽ is spanned by the set of basis
functions that span each of the component spaces. That is, Ṽ = span{f1,1(x), f2,1(x), f2,3(x)}. The
function spaces spanned by nodal basis functions are not disjoint and, as a result, the nodal basis
functions are not invariant to the underlying grid structure. Thanks to its multi-level construction,
the hierarchical basis does not suffer from this drawback. In particular, if we start with a grid G of
level l = 3 and remove one of the nodes associated with the highest level, e.g., x3,5 as in Figure 4,
the remaining hierarchical basis functions would not be affected.

Third, the multi-dimensional case with d > 1 again obtains by using tensor product construc-
tions as before.

Fourth, consider a grid G and the function values al,i = f (xl,i). We can characterize piecewise
linear interpolants on this grid, as well as the associated approximation spaces, by using either the
nodal or the hierarchical basis. Both sets of basis functions induce the same approximation space
of piecewise linear interpolants. Formally, for any piecewise linear function fl 2 Vl we also have
fl 2

L
kl Wk, and its representation in the hierarchical basis is given by

fl(x) = Â
i2Il

al,i fl,i(x)

| {z }
nodal representation

= Â
kl

Â
i2IH

k

aH
k,i fk,i(x)

| {z }
hierarchical representation

(5)

where aH
k,i are called the hierarchical surpluses. We graphically compare the nodal and hierarchi-

cal basis function representations in Figure 6, which illustrates that both bases span the same
approximation space of piecewise linear interpolants.

Hierarchization. According to equation (5) and as illustrated in Figure 6, the interpolant fl can
be represented using nodal or hierarchical basis functions. In the nodal representation, we take
as basis function coefficients simply the function values al,i = f (xl,i). Having shown that the
hierarchical basis can be constructed using a particular reordering of nodal basis functions, we
now explain how to obtain the hierarchical surpluses aH

l,i from the function values al,i. In particular,
we characterize projection operators that correspond to basis transformations between the nodal
and hierarchical bases.9 The resulting basis transformation operators will play a crucial role in our
discussion of continuous-time dynamic programming on sparse grids in Section 3.

Intuitively, the function values al,i simply fit the function at the grid point on which the basis
function is centered, i.e., al,i = f (xl,i). In Panel (a) of Figure 6, we see that the hat functions just
touch the black-dotted line that represents f (x). The hierarchical representation depicted in panel

9 These projection operators have been previously discussed by Griebel (1998), Schiekofer (1998), Bungartz and
Griebel (2004) and Ruttscheidt (2018) among others. We adopt the same notation as in Schiekofer (1998).
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(a) Interpolation in the nodal basis (b) Interpolation in the hierarchical basis

Figure 6: Nodal and hierarchical function approximations

Note. Figure 6 illustrates the nodal and hierarchical basis function representations of the piecewise linear interpolant
fl(x) (solid blue line) that approximates f (x) = 4

5 (sin(px) + 1
2 sin(2px)) (dashed black line) on a full grid of level l = 3,

G = {x3,i | i 2 I3}. Panel (a) recalls the nodal representation from Figure 2 for convenience. Panel (b) plots the
hierarchical basis functions, each weighted by the associated hierarchical surplus, as well as the linear interpolant fl(x)
(solid blue line). The two interpolants in panels (a) and (b) are identical, which signifies that the nodal and hierarchical
bases span the same approximation space.

(b), on the other hand, follows a multi-level construction. We first fit the function on level 1 by
setting aH

1,1 = f (x1,1) = f (0.5). On level l and index i, we now fit the residual. That is, instead of
setting aH

l,i = f (xl,i), we set aH
l,i = f (xl,i)� Âkl�1 Âi2IH

k
aH

k,i fk,i(x). For example, at the grid point
of level l = 2 index i = 1, i.e., at x2,1 = 0.25, we set aH

2,1 = f (x2,1)� aH
1,1 f1,1(x).

Due to this multi-level construction principle, we can always represent the hierarchical surplus
at a grid point in terms of its hierarchical parents, i.e., those grid points closest to it at the previous
level. We denote by H±

1 (xl,i) the left and right parent of xl,i in dimension 1. In particular, without
grid point xl,i the local function approximation in the hierarchical representation is simply a linear
interpolation between the two parents of xl,i, i.e., 1

2 f (H�
1 (xl,i)) +

1
2 f (H+

1 (xl,i)). So we find the
hierarchical surplus as the residual by subtracting the interpolated value from the local function
value

aH
l,i = f (xl,i)�

1
2

f (Hl
1(xl,i))�

1
2

f (H+
1 (xl,i)).

We call the linear map that transforms the function value at grid point xl,i into the associated
hierarchical surplus the hierarchization operator.

Definition 2. (Hierarchization) The one-dimensional hierarchization operator in dimension k, denoted
Hxlk ,ik ,hk : Vlk !

L
jklk Wjk , is defined via the stencil [� 1

2 1 � 1
2 ]hk , applied at point xlk ,ik with step size

hk, where hk = H+
k (xl,i)� xl,i denotes the distance to the hierarchical parent in dimension k. That is, for

f : R ! R,

Hxl,i ,h � f (xl,i) = f (xl,i)�
f (xl,i � h) + f (xl,i + h)

2
(6)
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for 1  i  2l � 1. And for f : Rd ! R,

Hxlk ,ik ,hk � f (xl,i) = f (xl,i)�
f (xl1,i1 , . . . , xlk ,ii � hk, . . . , xld,id) + f (xl1,i1 , . . . , xlk ,ii + hk, . . . , xld,id)

2
. (7)

The d-dimensional hierarchization operator is defined by the tensor product

Hxl,i ,h = ’
kd

Hxlk ,ik ,hk .

It can easily be verified that the hierarchization operator represents a basis transformation from the
nodal into the hierarchical basis. Formally, we have aH

l,i = Hxl,i ,h � al,i. See Bungartz (1992) for a
formal proof and further discussion.

The hierarchization operator introduced above applies at a given grid point, xl,i. It is conve-
nient to define a composite operator that performs one-dimensional hierarchization at every grid
point. Let Hk denote the operator that performs hierarchization in dimension k, Hxlk ,ik ,hk � u(xl,i), at
all grid points of a given grid. And let

H = ’
kd

Hk

denote the d-dimensional hierarchization operator that performs the basis transformation in all
dimensions. Finally, let Hk denote the operator that performs hierarchization in all but dimension
k. We also introduce the inverse operators that map from the hierarchical to the nodal basis and
are given by E = H�1, Ek = (Hk)�1 and Ek = H�1

k . We refer to these as de-hierarchization operators.
In the following, we denote the matrices that discretize these operators on a given grid using
bold-faced notation, i.e., H and E.

Taking stock, the hierarchization operators allow us to switch between nodal and hierarchical
basis representations, if necessary on a dimension-by-dimension basis. These projection matrices are
the key ingredient in the generalized finite-difference scheme we introduce below for continuous-
time dynamic programming on sparse grids.

Benefits of the hierarchical basis. We have motivated the hierarchical basis and its multi-level
construction by observing that its basis functions at level l are independent from all its parent basis
functions. Indeed, the hierarchical spaces themselves are disjoint.

An even more instrumental property of hierarchical basis representations is that hierarchical
surpluses directly measure the contribution of basis functions to the accuracy of the local function
approximation. By construction, the hierarchical surplus aH

l,i tells us how much grid point xl,i

contributes to the local function approximation residually, relative to the interpolant that would
obtain in the absence of this grid point. Hierarchical surpluses therefore play a key role in the
construction of adaptive sparse grids, where adaptive grid refinement directly leverages the
hierarchical surpluses as measures of residual local approximation error.
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As a result, hierarchical surpluses decay with their level. This property is intuitive in the
context of a multi-level construction whereby the hierarchical surplus at a given level l is used to
fit the residual approximation error from lower levels. The following Lemma, originally due to
Bungartz (1992), characterizes an estimate or bound on hierarchical surpluses of level l.

Lemma 1. (Estimate of Hierarchical Surplus) Let f : W ! R be a function that vanishes on the
boundary ∂W and has bounded mixed derivatives up to order two. The hierarchical surpluses aH

l,i associated
with the linear interpolant of f are bounded by

�� aH
l,i
��  C · 2�d · 2�2 |l|1

for a constant C that does not depend on l.

In conclusion, the hierarchical surplus aH
l,i directly encodes the marginal contribution of a grid point

xl,i to the accuracy of our local function approximation. And for functions that are sufficiently
smooth, hierarchical surpluses aH

l,i are guaranteed to decay in their level l. We exploit this property
in Section 1.3 to construct grids adaptively by dropping grid points with low hierarchical surpluses
and adding more grid points where hierarchical surpluses remain large.

1.3 Sparse Grids as Optimal Approximation Spaces

Having shown how to associate any grid G with the piecewise linear approximation space it
induces, we now use this framework to study the efficiency properties of three classes of grids,
which we formally introduce and define below: uniform grids, regular sparse grids, and adaptive
sparse grids. We associate the cost of a grid with the dimensionality of the approximation space it
induces. Similarly, we define the value of a grid point as its marginal contribution to the accuracy
of the function approximation. Formally, we compare the projection of f 2 V onto two different
approximation spaces and then characterize the respective distances from f in a desired norm
on V . Indeed, Zenger (1991) first introduced sparse grids and showed that they emerge from an
optimization problem over the active hierarchical spaces in a function representation.

Uniform grids. A uniform grid of level l is associated with the approximation space

v 2 Vug
l

=
M

|k|l

Wk =) v(x) = Â
i2Il

al,i fl,i(x) , where al,i = v(xl,i).

That is, the uniform grid corresponds to the usual space of piecewise d-linear functions on grids
with equidistant mesh size h = 2�l .

To formalize the efficiency properties of Vug
l

, it will be convenient in the main text to focus
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on uniform grids with the same mesh size in each dimension.10 That is, we set l = (l, . . . , l) and
h = 2�l . We can then show that the dimensionality, i.e., cost, of a uniform grid is

�� Vug
l

�� = (2l � 1)d = O(2d l) = O(h�d). (8)

Similarly, the accuracy of function approximations on uniform grids for functions of bounded
mixed derivatives up to order two is given by

k f � f ug
l
k•  C · d

6d · 2�2l = O(h2), (9)

for some constant C that is independent from h. Uniform grids suffer from the curse of dimen-
sionality as the number of grid points required to achieve accuracy O(h2) grows exponentially
according to equation (8).

Regular sparse grids. We now ask whether we can construct an optimal approximation space for
a given class of functions. We follow the exposition in Bungartz and Griebel (2004). In particular,
we can systematically construct finite-dimensional approximation spaces U ⇢ V via the subspace
selection index I ⇢ Nd and set

U =
M

l2I

Wl , with fU = Â
l2I

fl , fl 2 Wl .

That is, the selection index I determines the active grid points or basis functions in the span of our
desired approximation space U .

Our goal now is to find the most efficient space U in terms of some norm k f � fUk =

kÂl fl � Âl2I flk  Âl /2I k flk. That is, we look for some optimal finite index set I ⇢ Nd and
characterize the resulting approximation error Âl /2I k flk. Selecting a particular Wl to be included
in the approximation space is equivalent to selecting the associated nodes to be included in the
associated grid.

Regular sparse grids emerge from an a priori optimization problem that considers a broad class
of functions f , while adaptive sparse grids, which we study next, emerge from problem-dependent
optimization.

While different norms k · k lead to differently structured sparse grids, we define regular sparse
grids as those that obtain under the L2 norm (Zenger, 1991; Bungartz, 1992). Regular sparse grids
then induce the approximation space

V rsg
n =

M

|l|1n+d�1

Wl (10)

We illustrate the construction principle of regular sparse grids in Figure 7. The cost of regular
10 These grids are sometimes call isotropic grids.
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(a) One-dimensional grids (b) Tensor product construction of regular sparse grid

Figure 7: Constructing regular sparse grids

Note. Figure 7 illustrates the construction principle of regular sparse grids in terms of a restricted tensor product. Panel
(a) shows the elementary grids of levels up to l  (3, 3). A tensor product (or union) of all elementary grids would
result in the uniform grid of level (3, 3) and the associated approximation space Vug

l
. Panel (b) displays the analogous

regular sparse grid, which is the tensor product of all elementary grids of level |k|1  3 + d � 1 = 4. Concretely, the
three elementary grids that are transparent in panel (a) are dropped relative to the full tensor product that results in the
uniform grid. These three grids are associated with the levels (3, 2), (2, 3), and (3, 3), whose | · |1 norms are, respectively,
5, 5, and 6.

sparse grids, i.e., the dimensionality of the regular sparse grid approximation space, can be shown
to be of order

�� V rsg
n

�� = O(2n nd�1)

which is substantially smaller than the cost of a uniform grid O(2n d). At the same time, the accuracy
of the regular sparse grid approximation space is only slightly worse than that of the uniform grid
approximation space. See Bungartz (1992) and Bungartz and Griebel (2004) for additional details.

Adaptive sparse grids. Regular sparse grids are efficient under the L2 norm for the class of
functions of bounded mixed derivatives up to order two. They consequently represent a much
better starting point for most economic applications than uniform grids. However, allowing the
grid optimization problem to condition on additional information from the economic application
in question can lead to further substantial efficiency gains. The resulting grids are called adaptive
sparse grids.

Hierarchical surpluses directly measure the local residual error of a given function interpola-
tion in a piecewise linear approximation space. In particular, the hierarchical surplus aH

l,i associated
with grid point xl,i tells us the marginal contribution of this node to a piecewise linear approxima-
tion space. Crucially, it is easy to compute hierarchical surpluses. Given a vector of function values
a = {al,i}l,i, we obtain the associated hierarchical surpluses by applying the hierachization matrix,
aH = {aH

l,i}l,i = Ha. We can then adaptively refine our grid and the associated approximation
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(a) (b)

(c) (d)

Figure 8: Local grid adaptation

Note. The four panels of Figure 8 illustrate a complete grid adaptation procedure to approximate the function f (x) =
4
5 (sin(px) + 1

2 sin(2px)) (dashed black line) on the interval W = [0, 1]. Each panel also plots the adaptation thresholds eadd

and ekeep. The red-tinted triangles correspond to the hierarchical basis functions, which are weighted by the associated
hierarchical surpluses aH

l,i. In each refinement step, add the children of nodes whose hierarchical surpluses are larger than
eadd in absolute value and remove those whose hierarchical surpluses are smaller than ekeep. The adaptation procedure
converges in four steps and the resulting adaptive sparse grid is displayed in panel (d).
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space via the following procedure:

add the children of node xl,i if: |aH
l,i| > eadd (11)

keep node xl,i if: |aH
l,i| > ekeep, (12)

for some 0 < ekeep < eadd

We illustrate this grid adaptation procedure in Figure 8 for the function f (x) = 4
5 (sin(px) +

1
2 sin(2px)), plotted as a dashed-black line, on the interval W = [0, 1]. Panels (a) through (d) present
four successive steps of grid adaptation. Each panel also plots the adaptation thresholds ekeep and
eadd as horizontal lines. Panel (a) plots the hierarchical basis function of level 1, f1,1(x), centered
on the grid point x1,1 = 0.5. We obtain the hierarchical surplus aH

1,1 by fitting the function, i.e.,
aH

1,1 = f (x1,1) = f (0.5). Since the hierarchical surplus is larger than the threshold eadd, we adapt
the grid around node x1,1 by adding its children, x2,1 = 0.25 and x2,3 = 0.75 in panel (b). The
associated hierarchical surpluses aH

2,1 and aH
2,3 are obtained by fitting the function f (x) residually,

i.e., by fitting the distance between the dashed black and solid blue lines in panel (a). In each case,
the resulting hierarchical surplus is again larger than the threshold eadd in absolute value, and so
we add each node’s children in panel (c). Panel (c) illustrates that, for sufficiently smooth functions,
hierarchical surpluses become smaller at higher levels. In particular, the hierarchical surpluses aH

3,1

and aH
3,3 are larger than ekeep, so we retain these nodes in the grid, but they are smaller than eadd,

so we do not refine the grid further. The hierarchical surpluses aH
3,5 and aH

3,7, on the other hand,
are smaller than ekeep in absolute value, signifying that the associated nodes are not required to
fit f (x) to the desired accuracy. Panel (d) drops these two nodes. The grid adaptation procedure
has converged because all remaining nodes feature hierarchical surpluses larger than ekeep, and no
additional nodes need to be added.

2 Dynamic Programming on Uniform Grids

In this section, we review the theory of stochastic dynamic programming in continuous time and
its numerical application on uniform grids. In the interest of broad accessibility, we frame the expo-
sition in terms of the well-known neoclassical stochastic growth model. After a brief description
of the model in Section 2.1, we state the Principle of Optimality and prove the convergence of a
homogenized representation as a sequence of linear equations in Section 2.2. In Section 2.3, we
prove the convergence properties of a popular numerical method on uniform grids. By reviewing
this well-understood approach, we set the stage for the introduction of sparse grids in Section 3,
where we then show that the standard approach fails.
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2.1 The Neoclassical Stochastic Growth Model

Our notation follows closely that of Stokey and Lucas (1989), except that we write the model in
continuous time, with t 2 [0, •). The economy is populated by a representative household that
operates the economy’s production technology F(kt, zt), where kt denotes capital and zt exogenous
productivity risk. We assume the production function to be well-behaved, with F(0, z) = 0,
Fk, Fz > 0, and Fkk < 0. The economy’s initial state at time t = 0 is given by (k0, z0).

The representative household derives utility from consumption and faces the infinite-horizon
optimization problem

V(k0, z0) = max
{ct}t�0

E0

Z •

0
e�rtu(ct)dt, (13)

where r is the discount rate, u(·) denotes instantaneous flow utility, and {ct}t�0 is the stochastic
consumption process. E0 denotes the expectation over future productivity realizations.11 We
assume labor supply to be inelastic and require that consumption be non-negative, ct � 0 for all t.
The economy’s stock of capital, owned by the household, evolves according to

d
dt

kt = F(kt, zt)� ct � dkt. (14)

Finally, productivity follows the mean-reverting diffusion process

dzt = �qztdt + sdBt, (15)

where Bt is a standard Brownian motion.
To solve the neoclassical growth model means to solve program (13) subject to (14) and (15)

for the value function V(k, z) over a compact region X̄ ⇢ R2. We call X̄ the state space and, for the
neoclassical growth model, take it to be given by X̄ = {(k, z) | k 2 [0, k̄] and z 2 [z, z̄]}, for k̄, z̄  •
and z � �•. We now state the continuous-time analog of the classical Principle of Optimality (see,
e.g., Stokey and Lucas, 1989, p. 241-259).

Lemma 2. (Principle of Optimality) The value function defined in equation (13) solves a partial differen-
tial equation of the Hamilton-Jacobi-Bellman (HJB) form, given by

rV(k, z) = max
c

⇢
u(c) +

⇣
F(k, z)� c � dk

⌘
Vk(k, z)� qzVz(k, z) +

s2

2
Vzz(k, z)

�
, (16)

for all (k, z) 2 X .

Lemma 2 adopts a shorthand notation for partial derivatives, using Vk =
∂
∂k V(k, z), Vz = ∂

∂z V(k, z),
11 Our exposition in the main text is kept deliberately light on the formal details of the measure theoretic assumptions

that underlie this dynamic stochastic optimization problem. We present a more formal account in Appendix F, as well as
in our proofs in Appendix B.
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and Vzz = ∂2

∂z2 V(k, z). Equation (16) is known as a Hamilton-Jacobi-Bellman (HJB) equation and
takes the form of a parabolic partial differential equation (PDE). Formally, it is only defined on
the interior of the state space, which we denote X , and a set of boundary conditions is required to
characterize V(k, z) along the boundary, which we denote ∂X . We postpone a formal discussion of
boundary conditions until Section 4. In Appendix B.1, we present both a heuristic proof of Lemma
2, which many readers will be familiar with, as well as several formal proofs.

From equation (16), the consumption policy function c(k, z) satisfies the first-order optimality
condition

u0(c(k, z)) = Vk(k, z). (17)

Plugging the optimal policy back into equation (16), the HJB can be rewritten without the max
operator as

rV(k, z) = u
⇣

c(k, z)
⌘
+
⇣

F(z, k)� c(k, z)� dk
⌘

Vk(k, z)� qzVz(k, z) +
s2

2
Vzz(k, z), (18)

where the optimal policy function c(k, z) is given by equation (17) as a function of V(k, z). Solving
the partial differential equation (18) for the value function V(k, z) over the state space therefore
represents a solution of the dynamic optimization problem (13) - (15) that constitutes the neoclassical
growth model.

2.2 Homogenization via Time-Marching

Solving equation (18) directly would require resolving the optimal consumption policy, c(k, z) =
(u0)�1[Vk(k, z)]. Plugging back into (18) yields a highly non-linear partial differential equation.12

Non-linear partial differential equations are difficult to solve in practice. However, there is an
alternative approach that can be used to transform the fully non-linear HJB equation into a system
of linear equations via homogenization.

In particular, consider a sequence of functions {Vn}, with Vn : X̄ ! R, that are recursively
defined by

Vn+1 � Vn

Dt
+ rVn+1 = u

⇣
cn
⌘
+
⇣

F � cn � dk
⌘

Vn+1
k � qzVn+1

z +
s2

2
Vn+1

zz , (19)

where, for notational convenience, we suppress the dependence of Vn, cn and F on the state
variables. Crucially, the consumption policy is resolved using cn = (u0)�1Vn

k , which implies that,
given Vn, equation (19) is now linear in Vn+1. In the applied math literature, equation (19) is often
referred to as a (semi-implicit) time-marching scheme, a popular method to solve time-homogeneous,

12 Formally, the resulting HJB of the neoclassical growth model is quasi-linear because the terms corresponding to the
highest-order derivatives, here Vzz, remain linear. Consider, alternatively, a portfolio choice problem such as Merton
(1973), where the risky asset portfolio share multiplies the second-order term. The associated HJB would then be fully
non-linear. The homogenization approach we take here is nontheless very useful in both cases.
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i.e., stationary, non-linear differential equations (see, e.g., LeVeque, 2007, for a textbook treatment).
Solving recursively for the sequence of functions {Vn} requires an initial condition V0.

Proposition 3. (Contraction mapping) The sequence of functions {Vn} characterized by (19) converges
uniformly with Vn ! V̄, and we have V̄ = V so that the iterative scheme (19) converges to the stationary
value function defined by (18).

Proposition 3 establishes that the homogenized time-marching scheme (19) represents a convergent
contraction mapping, whose fixed point is the unique solution of the neoclassical growth model. In
other words, Proposition 3 is the continuous-time analog of the result that applying the functional
Bellman operator in discrete time yields a convergent contraction mapping. (See, e.g., Stokey
and Lucas, 1989, Theorem 4.6.) Crucially, the time-marching scheme (19) requires solving a linear
equation at every iteration n, rather than the fully non-linear equation (18). The proof of Proposition
3 is in Appendix B.2.

Dynamic programming problems in economics seldom yield an analytical closed-form solu-
tion. In the remainder of this section, we therefore discuss a popular class of numerical methods to
solve equation (19) recursively for {Vn}. In particular, this paper focuses on finite-difference methods
for partial differential equations.13 In Section 2.3, we discuss a well-known finite-difference scheme,
with which to solve equation (19) on uniform grids, and we prove its convergence properties in
Section 2.4. We thereby set the stage to introduce sparse grids in Section 3, where we first show
that the standard finite-difference scheme fails and then develop a generalized finite-difference
method to solve partial differential equations on non-uniform grids.

2.3 Finite Differences on Uniform Grids

Our goal in what follows is to develop a finite-difference method to solve equation (19) numerically
for the sequence Vn(k, z) and show that it converges to the solution of the neoclassical growth
model, with Vn(k, z) ! V(k, z).

To solve equation (19) numerically, we introduce a grid, a collection of points that discretize
the state space. The state space of the neoclassical growth model is given by the compact set
X̄ = [0, k̄]⇥ [z, z̄] ⇢ R2. We also introduce its torus, which corresponds to the interior of the state
space and is defined as X = (0, k̄)⇥ (z, z̄). Finally, we denote the boundary of the state space by
∂X̄ = X̄ \ X . For the remainder of Sections 2 and 3, we will work directly with X , where equation
(19) is well-defined. We postpone a formal treatment of boundary conditions until Section 4.

Let G ⇢ X̄ be a uniform grid of level l = (l, l), with mesh size h = 2�l = (h, h), containing J
grid points, xl,i.14 Our goal is to compute the J ⇥ 1 vector of function values V

n = {Vn
l,i}l,i on G

13 Alternative methods that we do not explore in this paper include the (Galerkin) finite element method and spectral
methods. See, e.g., Bungartz (1992).

14 For consistency, we stay in the framework developed in Section 1 based on the dyadic grid construction principle.
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to approximate the function Vn defined in equation (19), i.e., Vn
l,i ⇡ Vn(xl,i). We consistently use

bold-faced notation to denote vectors and matrices.
Using matrix notation, the discretization of equation (19) on grid G can thus be written as

1
Dt

(V n+1 � V
n) + rV

n+1 = u
⇣

c
n
⌘
+
⇣

F � c
n � dk

⌘
V

n+1
k � qzV

n+1
z +

s2

2
V

n+1
zz , (20)

where products are elementwise. The discretized first-order condition u0(cn) = V
n
k defines the con-

sumption policy. What remains to be specified in representation (20) is, of course, how to compute
the discretized partial derivatives, V

n+1
k and so on, which is the key step of the finite-difference

method. Indeed, our objective can now be formulated as follows: For which discretizations of V
n+1
k

and so on does the sequence {V
n} derived from scheme (20) converge, i.e., V

n ! V = {Vl,i}, and
yield a good approximation of the true value function, i.e., Vl,i ⇡ V(xl,i)?

Since derivatives are linear maps, their discretizations can be represented by matrices, i.e.,
V

n+1
k = DkV

n+1, V
n+1
z = DzV

n+1, and V
n+1
zz = DzzV

n+1, for some J ⇥ J matrices Dk, Dz, and Dzz

that we refer to as finite-difference matrices. Plugging back into equation (20), we obtain the numerical
finite-difference scheme

1
Dt

(V n+1 � V
n) + rV

n+1 = u
⇣

c
n
⌘
+
⇣

F � c
n � dk

⌘
DkV

n+1 � qzDzV
n+1 +

s2

2
DzzV

n+1,

which admits a more compact representation given by

⇣
r +

1
Dt

� A
n
⌘

V
n+1 = u

⇣
c

n
⌘
+

1
Dt

V
n, (21)

where A
n = (F � c

n � dk)Dk � qzDz + s2

2 Dzz. This representation of the finite-difference scheme
underscores that a linear system of equations must be solved at each step n. That is, V

n+1 =

(r + 1
Dt � A

n)�1⇥u(cn) + 1
Dt V

n⇤. For given matrices Dk, Dz, and Dzz, we say that equation (21)
defines a numerical finite-difference scheme. This recursive scheme represents the continuous-time
analog of iteratively applying the Bellman operator on discretized vectors V

n in discrete time. In
the remainder of this section, we introduce the standard finite-difference operators and matrices,
and show that, using these, scheme (21) satisfies desired convergence properties on uniform grids.

Definition 2. (Standard Finite-Difference Operators / Matrices) Consider a function f : X̄ ! R.
Let N±

j (xl,i) denote the right (+) or left (-) neighbor of xl,i in dimension j. The first- and second-order

A common alternative notational convention for isotropic uniform grids is the following: Denote grid points by
xi,j = (ki, zj), and set tn = nDt, ki = iDk = ih and zj = jDz = jh. The grid mesh size is then denoted by h = Dk = Dz,
where Dk = ki+1 � ki and Dz = zj+1 � zj for all i, j. Letting J denote the number of grid points, grid G can again be
thought of as a J ⇥ 2 matrix, where the row correspond to the (k, z) coordinates of the J grid points.

23



standard finite-difference operators are defined as

D+
z � f (xl,i) =

f (N+
z (xl,i))� f (xl,i)��N+

z (xl,i)� xl,i
��

D�
z � f (xl,i) =

f (xl,i)� f (N�
z (xl,i))�� xl,i �N�

z (xl,i)
�� (22)

Dzz � f (xl,i) =
f (N+

z (xl,i))� 2 f (xl,i) + f (N�
z (xl,i))��N+

z (xl,i)� xl,i
�� ·
�� xl,i �N�

z (xl,i)
��

and similarly for D±
k . The first- and second-order standard finite difference matrices discretize these operators

and are denoted D
±
z , D

±
k , and Dzz.

The definition of standard finite differences we present here is sufficiently general to apply to
all grid structures we consider in this paper. On isotropic uniform grids with mesh size h =
��N±

j (xl,i)� xl,i
�� for all j, equations (22) simply collapse to

D+
j � f (xl,i) =

f (. . . , xlj,ij + h, . . .)� f (xl,i)

h

D�
j � f (xl,i) =

f (xl,i)� f (. . . , xlj,ij � h, . . .)
h

Djj � f (xl,i) =
f (. . . , xlj,ij + h, . . .)� 2 f (xl,i) + f (. . . , xlj,ij � h, . . .)

h2

where the mesh size h is directly used to identify a grid point’s neighbors.

2.4 Consistency, Stability, Monotonicity, and Convergence

We now develop the well-known result that using the standard finite-difference matrices in equation
(21) leads to a convergent finite-difference scheme. To formally state this result, we first introduce
the important concepts of consistency, stability, and monotonicity. Our notation and exposition
closely follow LeVeque (2007) and Barles and Souganidis (1991).

Our overarching goal is to estimate or bound the error that is incurred by solving the dis-
cretized scheme (21) for {V

n} relative to the sequence of functions {Vn} defined by the recursion
(19). Conceptually, we follow a two-step strategy that is an integral component in the analysis of
finite-difference methods. First, we develop an estimate of the local error in discretizing derivatives
using finite differences. Second, we provide conditions under which this local error does not
propagate too much, which allows us to bound the global error in terms of the local error.

The global error of the finite-difference scheme at a fixed point is our ultimate object of interest.
Consider the point in the state space x 2 X associated with grid point xl,i and fix n. The global
error in scheme (21) is then given by En

l,i = Vn
l,i � Vn(xl,i), where Vn

l,i is obtained from (21) and
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Vn(xl,i) from (19).
The local truncation error (LTE) of a finite-difference scheme measures the local accuracy of the

discretization itself and is obtained by evaluating the finite-difference scheme in question using the
true function. For scheme (21), we have tn

l,i = tn(xl,i), with

tn(k, z) =
1

Dt
(Vn+1(k, z)� Vn+1(k, z)) + rVn+1(k, z)� u

⇣
cn(k, z)

⌘
(23)

�
⇣

F(k, z)� cn(k, z)� dk
⌘

Dk � Vn+1(k, z) + qzDz � Vn+1(k, z)� s2

2
Dzz � Vn+1(k, z).

The difference between equations (21) and (23) is that the latter evaluates the finite-difference
scheme by plugging in the true function values Vn+1(k, z). In the context of differential equations
that admit a closed-form solution, the LTE can be directly computed using its definition (23). In
most applications, however, the true function values Vn+1(k, z) are not available. Nonetheless,
equation (23) can still be used to develop error estimates, for example when Vn(·) is sufficiently
smooth.

Definition 3. (Consistency) A finite-difference method is consistent on uniform grids if tn
l,i ! 0 for all

i 2 Il and n as l ! • and Dt ! 0.

Consistency requires that the finite-difference discretization of partial derivatives is sensible,
resulting in a local error that decays in the resolution of the grid, i.e., as l ! •, and the time step,
i.e., as Dt ! 0. A local error bound is of course necessary for the global error En

l,i at the fixed point
xl,i and time step n to decay as the grid and time steps become finer. The key to establish a link
between local and global errors are the stability and monotonicity of the finite-difference scheme,
which we define next.

Definition 4. (Stability) A linear finite-difference scheme of the form (21) is (Lax-Richtmyer) stable on
uniform grid G if (r + 1

Dt � A
n) is invertible and, for each time step T, there exists a constant CT > 0 such

that ���
⇣

r +
1

Dt
� A

n
⌘�1 1

Dt

���  CT,

for all h > 0 and n for which h · n  T.

To introduce monotonicity, we rewrite the finite-difference scheme (21) following Barles and
Souganidis (1991) in the form

S
⇣

Dt, G, V
n+1,

�
Vn

l,i, Vn+1
l,i

 ⌘
=

1
Dt

(V n+1 � V
n) + rV

n+1 (24)

� u
⇣

c
n
⌘
�
⇣

F � c
n � dk

⌘
DkV

n+1 + qzDzV
n+1 � s2

2
DzzV

n+1
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where S(·) defines a J ⇥ 1 vector on grid G. The third and fourth arguments of S(·) deserve
notational clarification. We say that the element Sl,i associated with grid point xl,i depends on Vn+1

l,i

directly through the third argument, and on all other elements of V
n and V

n+1, i.e., all elements of
these two vectors other than Vn+1

l,i , through the fourth argument.

Definition 5. (Monotonicity) A linear finite-difference scheme of the form (21) is monotonic on grid G if
S(·) is decreasing in its fourth argument up to order O(h), i.e.,

S(Dt, G, r, p) � S(Dt, G, r, q) +O(h) , if p  p0.

Having introduced the concepts of consistency, stability, and monotonicity, we can now formally
define convergence of finite-difference schemes and present the main result of this section. Note
that the concept of convergence at stake here concerns the behavior of the finite-difference method’s
global error En

l,i at a fixed point as the grid and time step become finer. The notion of a convergent
finite-difference scheme in this sense is distinct from the convergence of the homogenized time-
marching scheme (19), which we proved in Proposition 3.

Definition 6. (Convergent Finite-Difference Scheme) We say that a linear finite-difference scheme of
the form (21) is convergent on grid G if the global error converges in k · k2 in the resolution of grid and time
steps, i.e., if kEn

l,ik2 ! 0 as l ! • and Dt ! 0 for n · 2�|l|•  T.

We are now ready to state the well-known result that linear scheme (21) is consistent, stable,
monotonic, and convergent on uniform grids when using standard finite-difference matrices D

±
z ,

D
±
k , and Dzz.

Proposition 4. (Convergence of Standard Finite-Difference Scheme on Uniform Grids) Let G be a
uniform grid with mesh size h over the torus X . Construct the sequence {V

n}, where V
n 2 R J , recursively

according to (21) using standard finite-difference matrices D
±
z , D

±
k , and Dzz. Then:

(i) (Consistency): The local truncation error (LTE) converges uniformly, with tn
l,i ! 0 as l ! • and

Dt ! 0.

(ii) (Stability): Scheme (21) is stable if we use an upwind scheme for Dk and Dz.15

(iii) (Monotonicity): Scheme (21) is monotonic.

(v) (Convergence): For a fixed T, the global error En
l,i decays in k · k2 as l ! • and Dt ! 0 for

n · 2�|l|•  T.

15 See, e.g., LeVeque (2007) for a textbook treatment of the upwind method or Achdou et al. (2021) for a discussion in
the context of economic applications.
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(vi) (Existence and uniqueness): In iteration n, there exists a unique solution V
n+1 to (21).

(vii) (Contraction mapping): Scheme (21) is a contraction mapping. There exists a J ⇥ 1 vector V such
that V

n ! V .

From (v) and (vii), the piecewise linear interpolant of V on X converges to the unique stationary value
function V(·) as l ! •.

3 Dynamic Programming on Sparse Grids

The goal of Section 3 is to develop a finite-difference method for dynamic programming problems
and the resulting differential equations on sparse grids. To set the stage, we show in Section 3.1 that
the standard method introduced in Section 2 is no longer consistent and breaks down on sparse
grids. Section 3.2 then develops a consistent finite-difference method by leveraging the hierarchical
basis transformations introduced in Section 1. Finally, we develop a value function iteration
algorithm on adaptive sparse grids in Section 3.3, and conclude with a discussion of monotonicity
and convergence in Section 3.4. We postpone a formal treatment of boundary conditions until
Section 4.

3.1 What Goes Wrong on Sparse Grids

On sparse grids, the standard finite-difference stencils no longer lead to consistent discretizations of
partial derivatives and, in particular, scheme (21) breaks down. The failure of the standard method
in the context of sparse grids is the principal motivation for this paper. We start our discussion of
dynamic programming on sparse grids by formalizing this negative result.

Proposition 5. (Inconsistency of Standard Finite-Difference Schemes on Sparse Grids) Let G be a
regular sparse grid of level l. Construct the sequence {V

n} recursively according to (21) using the standard
finite-difference matrices D

±
k , D

±
z , and Dzz. Then:

(i) In iteration n, there exist at least d · 2|l|•�1 grid points with discretization error (LTE) of order O(1).

(ii) The discretization using standard finite-difference matrices is not consistent. That is, tn
l,i 6! 0 as

l ! •.

(iii) If V
n ! V converges as n ! • on grid Gl , then the interpolant of V does not converge to the unique

solution V of equation (18) as l ! •.

We present the proof of Proposition 5 in Appendix C.2.
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(a) l = (2, 2) (b) l = (3, 3) (c) l = (4, 4)

Figure 9: Inconsistency of Standard Finite-Difference Method on Sparse Grids

Note. Figure 9 illustrates the failure of standard finite-difference schemes on sparse grids. Panels (a) through (c) plot a
sequence of two-dimensional regular sparse grids of increasing level l. The figure highlights that for arbitrary levels of
resolution, i.e., arbitrarily large l, regular sparse grids feature nodes at which the local truncation error of a standard
finite-difference discretization of the first-order partial derivative remains of order O(1). Examples of such nodes are
colored blue in each panel. The dashed blue line plots the distance between these focal nodes and their right neighbors,
which does not decay despite the increasing resolution of the grid.

The standard finite-difference discretization typically used on uniform grids fails to yield a
consistent discretization scheme on sparse grids. That is, one cannot simply use the discretizations
D±

k , for example, to approximate the partial derivative operator ∂
∂k on sparse grids. In particular,

part (i) of Proposition 5 establishes that on regular sparse grids of level l, there is always a minimum
number of grid points — at least d · 2|l|•�1 of them — at which the local truncation error of a
standard finite-difference stencil remains of order O(1). In other words, the local discretization
error at these points does not decay as the grid becomes finer, i.e., l ! •.

We illustrate the intuition behind this negative result in Figure 9. Panels (a) through (c) display
two-dimensional regular sparse grids of increasing level l. Each panel contains a focal grid point,
colored in blue, at which we apply the standard finite-difference forward operator in the horizontal
dimension. The dashed blue lines connect these focal points to their right neighbors, illustrating
the standard forward stencil. In panel (a), the focal point is (0.5, 0.5) and the distance to its right
neighbor, (0.75, 0.5), is h2 = 0.25. A consistent discretization of the first derivative requires that this
distance shrinks as the grid becomes finer. Panel (b) demonstrates that a finer regular sparse grid
indeed adds grid points on the main axis, with the distance between point (0.5, 0.5) and its right
neighbor shrinking to h3 = 0.125, as required for a consistent discretization scheme.

Panel (b) also underscores, however, that refining the regular sparse grid introduces new grid
points, at which the distance to the right neighbor remains 0.25. We color one such focal point in
blue. As the sparse grid becomes finer, with l ! •, there will always be a minimum number of grid
points that are 0.25 removed from their right neighbor. In panel (c), we highlight one such new grid
point in blue. Even for the finest sparse grids, with l large, applying the standard finite-difference
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stencil at such grid points leads to a local discretization error that remains of order O(1). Even more
problematically, the discretization error incurred at grid points in a local neighborhood remains of
different order. For example in panel (c), the approximation error of the standard forward stencil
applied at point (0.5, 0.5) has shrunk to h4 = 0.0675 — indeed, it is of order 2�|l|• on this main axis
and thus decays as the grid becomes finer. At the nearby focal point (0.625, 0.5) colored in blue,
however, it remains proportional to 0.25 and thus of order O(1). As a result, the discretization of
partial derivatives becomes increasingly non-smooth as they locally converge to their true value at
some grid points but remain inaccurate at other points in a vanishingly small local neighborhood.

3.2 A Finite-Difference Scheme for Sparse Grids

We are now ready to develop a sparse finite-difference method and prove that it is consistent on non-
uniform grids, which is the main result of this section. The hierarchization operators introduced in
Section 1 are at the heart of the sparse finite-difference operators defined below.

Definition 7. (Sparse Finite-Difference Operators / Matrices) The first- and second-order sparse
finite-difference operators are defined as

D±, S
k = Ek � D±

k � Hk , D±, S
z = Ez � D±

z � Hz , and DS
zz = Ez � Dzz � Hz, (25)

where D±
• and Dzz are the standard finite-difference operators introduced in (22), and E• and H• are

hierarchization operators. The matrix discretizations of the sparse finite-difference operators are defined as

D
±, S
k = Ek D

±
k Hk, D

±, S
z = Ez D

±
z Hz, and D

S
zz = Ez Dzz Hz, (26)

where D
±
• and Dzz are the standard finite-difference matrices introduced in (22), and E• and H• are

hierarchization matrices.

Sparse finite-difference matrices are still based on the standard stencils D
±
k , D

±
z , and Dzz, but

interact these with hierarchization and dehierchization. In simple words, the sparse finite-difference
matrix D

+, S
j in dimension j applied to a vector of function values V comprises three steps: First,

hierarchize the function values V in all dimensions but j (apply Hj). Second, use the standard
finite-difference stencil for the desired derivative (apply D

+
j ). Third, dehierarchize the resulting

vector in all dimensions but j (apply Ej).
With these definitions in hand, we can generalize the finite-difference scheme (21) for the HJB

equation to sparse grids, which yields

V
n+1 � V

n

D
+ rV

n+1 = u
⇣

c
n
⌘
+
⇣

F � c
n � dk

⌘
D

S
k V

n+1 � qz D
S
z V

n+1 +
s2

2
D

S
zzV

n+1. (27)

After rearranging and defining the composite operator A
n, S = (F � c

n � dk) D
S
k � qzD

S
z +

s2

2 D
S
zz,
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we arrive at the sequence of linear systems

⇣
r +

1
Dt

� A
n, S
⌘

V
n+1 = u

⇣
c

n
⌘
+

1
Dt

V
n.

Finally, we define the local truncation error associated with the sparse finite-difference scheme (27)
as tn,S

l,i = tn,S(xl,i), where

tn,S(k, z) =
1

Dt
(Vn+1(k, z)� Vn+1(k, z)) + rVn+1(k, z)� u

⇣
cn(k, z)

⌘
(28)

�
⇣

F(k, z)� cn(k, z)� dk
⌘

DS
k � Vn+1(k, z) + qzDS

z � Vn+1(k, z)� s2

2
DS

zz � Vn+1(k, z).

The following proposition summarizes the main result of this section: sparse finite-difference
matrices lead to consistent discretizations of first- and second-order partial derivatives on sparse
grids.16

Proposition 6. (Consistency of Sparse Finite-Difference Schemes) Let G be a regular sparse grid of
level l over the torus X . Consider the sequences of function values {V

n} and LTEs {tn,S} defined by (27)
and (28). Then:

(i) The sparse finite-difference operators D±, S
j and DS

jj lead to consistent discretizations of first- and
second-order partial derivatives in dimension j.

(ii) Scheme (27) is a consistent discretization of the HJB equation (18). That is, tn,S
l,i ! 0 for all i 2 IH

l

and n as l ! • and Dt ! 0.

The proof of Proposition 6 is in Appendix C.3. In the remainder of this subsection, we explain and
unpack why the sparse finite-difference method is consistent while the standard one is not. We
discuss three perspectives that are useful to understand this result.

Information from off-dimensions. Sparse finite-difference stencils draw valuable information
from off-dimensions, i.e., from neighbors in a d-dimensional ball. Recall the source of inconsistency
in the negative result of Section 3.1: When applying the standard forward stencil at one of the focal
points colored blue in Figure 9, the standard stencil looks for a right neighbor that is far removed.
At the same time, however, there are other grid points in a d-dimensional ball around the focal
node that are much closer and that, intuitively, should provide important information regarding
the derivative of the function.

16 In addition to the definition and construction of generalized sparse finite-difference operators, it is also important
to define an underlying function algebra on sparse grids. We subsume this step implicitly in our discussion. For details on
this, see Schiekofer (1998) and Griebel (1998).

30



(a) Ej (b) Ej D
+
j

(c) Ej D
+
j Hj

Figure 10: Decomposition of Sparse Finite-Difference Stencil

We illustrate this intuition in Figure 10, where we break the sparse finite-difference matrix
D

+,S
j into its three constituent operations Ej, D

+
j , and Hj, each applied at the focal node (x, y) =

(0.5, 0.8125) marked with a cross. The underlying grid is a regular sparse grid of level l = (4, 4).
In panel (a), we see that Ej identifies all points with the same x = 0.5 value as the focal node that
have right-neighbors that are closer than the right-neighbor of the focal node itself.17 For example,
grid point (0.5, 0.75) has a right neighbor at (0.625, 0.75). The distance between these two nodes

17 Why do we unpack these matrices left-to-right? Our goal is to compute the approximate derivative at point
(0.5, 0.8125) of a function represented by its function values V on the grid. Applying the sparse finite-difference stencil to
these function values, the matrix-vector product D

+
x V , results in a vector that represents this derivative across the grid.

We are interested in its value at a specific focal node, whose index we denote by i for illustrate. That is, our object of
interest is (D

+
x V)i = D

+
x,[i,:] V , which itself can be represented as the dot product of the ith row of D

+
x with the vector V .

Similarly, when splitting up the sparse finite-difference stencil into its constituent operations, evaluating the derivative
at node i yields (Ex D

+
x Hx V)i = Ex,[i,:] D

+
x Hx V , i.e., the dot product of the ith row of the leftmost matrix Ex with the

vector D
+
x Hx V . It is precisely this ith row of Ej that we display in panel (a) of Figure 10.

31



is 2 · h4 = 2 · 2�|l|• = 0.125. The distance between the focal node itself and its right neighbor, on
the other hand, is 0.5. Intuitively, therefore, grid point (0.625, 0.75) may contain more information
about the first derivative of a function at the focal node than the latter’s right neighbor (1, 0.8125).

In the second step, displayed in panel (b), we apply the standard forward stencil D
+
x to

all those grid points previously identified by Ej. Applying the standard forward stencil in turn
identifies the respective right-neighbors of these points, each of which is closer in the x-dimension
to the focal node than its own right-neighbor. Finally, we apply Hj. Panel (c) displays the composite
sparse finite-difference forward stencil applied at the focal node. Instead of simply looking for the
right-neighbor of the focal node, the sparse stencil draws on information from those nearby grid
points in the off-dimension that have relatively closer right-neighbors. In d > 1 dimensions, the
sparse stencil draws on information from nearby grid points in a d-dimensional ball.

Interpolation. By definition, the first-order partial derivative of V(x) in dimension j is ∂xj V(x) =
limh!0

1
h (V(. . . , xj + h, . . .)� V(x)). Consider a sequence of grids that we can associate with this

limit and a focal node i, at which we want to evaluate the partial derivative ∂xj V(x). Suppose
the node xi+ = xi + hej is always on the grid as we take h ! 0, i.e., the focal node xi always has
its right-neighbor of distance h on the grid. In that case, simply applying the standard forward
stencil leads to a consistent discretization of ∂xj V(x) at point xi because V(xi+)� V(xi) = O(h)
by construction. On uniform grids, this is true for every grid point, and so the standard stencil is
consistent. On regular sparse grids of level l, D

+, S
j also collapses to the standard forward stencil at

those nodes whose right-neighbor of distance h = 2�|l|• is on the grid. Whenever this is not the
case, the sparse finite-difference stencil draws on information from off-dimensional neighbors as
we discussed above.

These observations suggest a necessary condition for consistency: Any candidate discretization
D̃

+
j of the partial derivative ∂xj must — in order to be consistent — satisfy

D̃
+
j V =

V(. . . , xj + h, . . .)� V(x)
h

+O(h) =
1
h

V(. . . , xj + h, . . .)� 1
h

V +O(h)

where h = 2�|l|• indexes a sequence of regular sparse grids with h ! 0 as l ! •. Intuitively,
therefore, any consistent discretization must recover an approximation of the h-removed right-
neighbor V(. . . , xj + h, . . .) with error of order O(h). In other words, we would like to interpolate
the vector of function values V onto the right-neigbhor xi+ for every node i and then construct the
standard forward difference using this interpolant.18

We now show that sparse finite-difference stencils implement exactly this interpolation. For-
mally, define the operator that interpolates onto xl,i + hej via

I+j,h � V(x) = V(. . . , xj + h, . . .),

18 This also requires that the interpolation error decays at O(h).
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and its matrix discretization by I
+
j,h.

Proposition 7. (Sparse Finite Differences via Interpolation) The sparse finite-difference operators and
matrices implement an interpolation stencil, given by

Ej D
+
j Hj =

I
+
j,h � I

h
, (29)

where I is the identity matrix.

We present the proof of Proposition 7 in Appendix C.4. Analogously to Figure 10, we illustrate
the decompositions of the sparse finite-difference and interpolation matrices in equation (29) in
Appendix C.5.

Taylor expansions. Consider again the negative result of Section 3.1. In the context of the grid
shown in Figure 10, the negative result obtains because there are grid points, such as our focal node
(0.5, 0.8125), whose distance from their right neighbor is not proportional to h = 2�|l|• = 2�4 =

0.0625. Indeed, the right-neighbor of the focal node is (1, 0.8125), and the distance between these
two points is 0.5.

The consistency of a finite-difference scheme is often established by examining its Taylor
expansion. Consider the standard forward stencil in the x-dimension applied at the focal node of
Figure 10, which we denote (xi, yi) = (0.5, 0.8125). The implied derivative approximation is

D+
x � f (xi, yi) =

f (1, yi)� f (0.5, yi)
0.5

⇡ 1
0.5

⇣
f (xi, yi) + ∂x f (x, y) |xi ,yi (1 � xi) + ∂xx f (x, y) |xi ,yi (1 � xi)

2 � f (xi, yi)
⌘

⇡ ∂x f (x, y) |xi ,yi +∂xx f (x, y) |xi ,yi (1 � xi)

where the second line follows from a second-order Taylor expansion around the point (xi, yi), and
the third line uses 1 � xi = 0.5. Now, crucially, suppose ∂xx f (x, y) |xi ,yi is not 0. Then, the residual
error in our discretization of the partial derivative ∂x f (x, y) |xi ,yi with the standard finite-difference
stencil D+

x � f (xi, yi) is of order O(1) — rather than O(h) as consistency would require — because
(1 � xi) = 0.5 is O(1) and does not decay with h.

We can perform a similar Taylor expansion for the sparse finite-difference stencil displayed
in panel (c) of Figure 10. Notice that D

+, S
x loads on three nodes on the right boundary — namely,

(1, yi), (1, yi � h), and (1, yi + h) — whereas the standard stencil D
+
x only loads on the single point

(1, yi), which leads to the problem we discuss above. To illustrate how the sparse stencil achieves
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consistency, consider the second-order Taylor expansions of the three points on the right boundary

f (1, yi) ⇡ f (xi, yi) + ∂x f (x, y) |xi ,yi (1 � xi) + ∂xx f (x, y) |xi ,yi (1 � xi)
2

f (1, yi + h) ⇡ f (1, yi) + ∂y f (x, y) |xi ,yi h + ∂yy f (x, y) |xi ,yi h2 + ∂xy f (x, y) |xi ,yi (1 � xi)h

f (1, yi � h) ⇡ f (1, yi)� ∂y f (x, y) |xi ,yi h + ∂yy f (x, y) |xi ,yi h2 � ∂xy f (x, y) |xi ,yi (1 � xi)h.

Next, we add these terms according to the weights implied by the sparse stencil D
+, S
x . We obtain

2 · f (1, yi)� 1 · f (1, yi + h)� 1 · f (1, yi � h) ⇡ �2 · ∂yy f (x, y) |xi ,yi h2.

Crucially, all terms of order O(1) dropped out. The only remaining term under a second-order
Taylor expansion is ∂yy f (x, y) |xi ,yi h2, which now scales in h. In a mechanical sense, this is how the
sparse finite-difference stencil fixes the O(1) discretization error.

In conclusion, the standard finite-difference matrices D
±
j and Djj lead to consistent discretiza-

tions of partial derivatives in dimension j on uniform grids. To obtain consistency on sparse grids,
we simply interact the standard stencils with an initial hierarchization step and a subsequent dehier-
archization step. In practice, this requires pre- and post-multiplying the standard finite-difference
matrices by two projection matrices whose construction is cheap and straightforward.

3.3 Value Function Iteration on Adaptive Sparse Grids

We have so far discussed continuous-time dynamic programming on uniform and regular sparse
grids. In this section, we develop a value function iteration algorithm to solve the sparse finite-
difference scheme (27) on adaptive sparse grids. That is, we take as our starting point a regular
sparse grid Gl0 of a given initial level l0 and then refine the grid by adding (removing) grid points
where local approximation errors remain large (become small). At the heart of this procedure is the
observation that hierarchical surpluses encode residual, local approximation errors.

Grid adaptation. Equipped with the results of Sections 1 and 3.2, we can recursively construct
the sequence of vectors {V

n} on a given regular sparse grid Gl0 that discretizes the state space
X̄ . We now introduce adaptive grid refinement as an iterative outer step. Iteration k of this outer
fixed point is associated with a grid Gk, taking G0 = Gl0 , and solves an approximate solution
{V

k,n} ! V
k. We then construct an adapted grid Gk+1 by adding and removing grid points

according to the residual, local approximation errors encoded in the hierarchical representation of
V

k.
Formally, we can associate the Jk ⇥ 1 vector V

k with an interpolant Vk(x) in the approximation
space of piecewise linear interpolants induced by grid Gk. Our goal, then, is to adaptively construct
a grid that, given a desired number of degrees of freedom (grid points), minimizes the approxi-
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Algorithm 1 Value Function Iteration on Adaptive Sparse Grids

1: Choose an index l
0 and construct associated regular sparse grid G0 = Gl0

2: Construct H
0 and sparse FD operators on G0 . Equations (7) and (26)

3: Initialize guess for the value function V
0 on G0

4: for k � 0 do
5: for n � 0 do
6: Compute A

k,n using sparse FD operators . Equation (27)
7: Solve linear system for V

k,n+1 . Equation (27)
8: Continue if |V k,n+1 � V

k,n| > eVFI

end
9: Compute hierarchical surplus ak,H = H

k
V

k

10: If adaptation criterion met, adapt grid Gk+1 . Equations (11) and (12)
11: Reconstruct H

k+1 and sparse FD operators on Gk+1 . Equations (7) and (26)
end

mation error kV � Vkk, where V is the true solution of the stochastic neoclassical growth model.19

To this end, we leverage the hierarchical representation of V
k and use the resulting hierarchical

surpluses as our adaptation criterion for Gk+1.20 Using the hierarchization matrix H
k associated

with grid Gk, the hierarchical surpluses associated with V
k are given by ak,H = H

k
V

k, where ak,H is
the Jk ⇥ 1 vector of hierarchical surpluses. We adopt the same adaptation criterion as in equations
(11) and (12), given thresholds 0 < ekeep < eadd.

Whenever a particular node i in the grid satisfies the adaptation criterion, we add all neighbor-
ing grid points one hierarchical level lower. We denote these grid points the children of the parent
node i. During the adaptation process, it is crucial that the grid contains all the parents of all of
its nodes. If this is not the case and the grid has holes, we are no longer able to map nodal into
hierarchical function representations.21 In practice, we check to add any parent nodes back in if our
adaptation algorithm deletes them.

Algorithm. Our proposed algorithm to solve dynamic programming problems in continuous
time using adaptive sparse grids is summarized in Algorithm 1.

3.4 Monotonicity and Convergence

For finite difference discretizations, we typically want to prove the convergence of the proposed
numerical discretization scheme. In the context of partial differential equations that admit classical

19 Mechanically, the residual approximation error is large in regions of the domain X̄ where V features relatively
more concavity, i.e., where V is particularly different from its interpolant based on the piecewise linear basis functions
operative in that region.

20 Due to its multi-level structure, the size of the lowest-level hierarchical coefficient is a good measure of the
function’s concavity in the region. An adaptation criterion can therefore be chosen simply in terms of the hierarchical
coefficients obtained in iteration k.

21 See, e.g., Ruttscheidt (2018) for further discussion of this point.
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solutions, the Lax-Friedrich’s lemma postulates that convergence obtains when the underlying
scheme is consistent and stable. In the context of viscosity solutions, on the other hand, the seminal
work by Barles and Souganidis (1991) shows that we additionally require a monotonicity condition
on the underlying scheme.

The main difficulty with proving general results on the convergence of sparse finite-difference
schemes in the context of viscosity solutions is that the Barles and Souganidis (1991) monotonicity
condition is generally not satisfied. In this context, Hemker (2000) points out that interpolation
on sparse grids does not generally satisfy monotonicity. Garcke and Ruttscheidt (2019) show that
even in the case of concave, monotonically increasing functions, interpolation on sparse grids is
not generically guaranteed to be monotone. In particular, they show that when the hierarchical
representation of a concave and monotonically increasing function leads to negative hierarchical
coefficients, the resulting sparse grid interpolation may be non-monotone. Garcke and Ruttscheidt
(2019) propose adaptive grid refinement in areas of the state space where non-monotonicities arise.
This can be achieved by either checking the hierarchical coefficients for positivity, or by verifying
that the numerically approximated derivatives satisfy the concavity and monotonicity conditions
of the underlying value function.

In the present version of this paper, our focus is on numerically demonstrating the convergence
of value function iteration algorithm 1 using adaptive sparse grids in the context of a wide range
of economic applications. We pursue this strategy in Section 5. In ongoing work, we continue to
explore the formal stability and monotonicity properties of sparse finite-difference methods.

4 Boundary Conditions

Our discussion thus far has been focused around solution methods for equation (18) on differently
structured grids over the torus X = (0, k̄)⇥ (z, z̄). In this section, we extend our results to sparse
grids over the compact state space X̄ = [0, k̄]⇥ [z, z̄]. For convenience, we introduce the notation
∂X̄ = X̄ \ X to denote the boundary region which we have thus far abstracted from.

Equation (18) is only formally defined on the interior X , not on the boundary. In other words,
equation (18) is not sufficient to characterize the behavior of V(k, z) over X̄ . Additional information
is required about the solution V along the boundary ∂X̄ . The most general form of boundary
condition we consider in this paper on the d-dimensional domain x 2 W ⇢ Rd takes the form

B(x, V, Vx, Vxx) = 0 , for x 2 ∂X̄ (30)

Simply put, equation (30) specifies extra conditions for the grid points along the boundary, which
help us to fully pin down V on X̄ . While these conditions could in general depend on any
partial derivative of V, we restrict attention to the case where at most second-order mixed partial
derivatives appear in boundary conditions. Most economic applications we have encountered

36



(a) Differential equation holds in the interior (b) Differential equation holds on entire grid

Figure 11: Alternative Approaches to Implement Boundary Conditions

Note. Figure 11 illustrates two popular approaches to implement the boundary conditions of a differential equation.
Panels (a) and (b) plot a grid that discretizes the one-dimensional domain [0, 1]. The first approach—panel (a)—assumes
the differential equation only holds in the interior of the state space (red), using the boundary conditions to characterize
the function values along the boundary (blue). The second approach—panel (b)—assumes the differential equation
holds at the boundaries as well (now red), and the boundary conditions are used to characterize function values for a set
of hypothetical exterior nodes just outside the boundary (blue).

satisfy this restriction.
In the case of the neoclassical growth model, for example, we require four boundary conditions

to fully pin down V(k, z) on [0, k̄] ⇥ [z, z̄]. In the k dimension, we impose two state-constrained
boundary conditions, one each at 0 and k̄, to ensure that households never decumulate and accumulate
capital when they are at k = 0 and k = k̄, respectively.22 In the z dimension, we impose reflecting
boundary conditions which similarly ensure that households at z and z̄ never “leave” the region [z, z̄].

4.1 Boundary Conditions on Uniform Grids

To start our discussion of boundary conditions, consider a uniform grid over [0, k̄]⇥ [z, z̄] with
grid points xij = (ki, zj) for i 2 {1, . . . , I} and j 2 {1, . . . , J}.23 There are two popular approaches
to implement boundary conditions of the form (30) on such a grid. The first approach considers
{xij | i 2 {1, I} and j 2 {1, J}} as the boundaries and treats the associated differential equation
as defined only on {xij | 2  i  I � 1 and 2  j  J � 1}. Under this approach, we use (27)
to construct a linear system of (I � 2)⇥ (J � 2) equations, corresponding only to the interior of
the grid. We illustrate this approach in panel (a) of Figure 11 for the one-dimensional case. We
consider a uniform grid over the interval [0, 1] comprising 9 grid points. The points colored in red
make up the interior of the grid, while the two points colored in blue are the boundary points. A
finite-difference method following the first approach would use the boundary conditions (30) to
characterize the function values on the two boundary points, while solving a system of 7 linear
equations for the function values on the remaining interior points.

We follow the second approach, which treats the differential equation (18) as if it was defined
on the entire grid, i.e., for all {xij | 1  i  I and 1  j  J}. Under this approach, we work with a
set of hypothetical exterior nodes that are placed just outside the boundaries of the state space X̄ .

22 See Achdou et al. (2021) for a detailed discussion of state-constrained boundary conditions.
23 Formally, we define ki =

(i�1)Dk�0
k̄�0 for i 2 {1, . . . , I} and zj =

(j�1)Dz�z
z̄�z for j 2 {1, . . . , J}.
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For the one-dimensional case, this is illustrated in panel (b) of Figure 11, where the two exterior
nodes �0.125 and 1.125, colored in blue, are added. We denote these boundary points with indices
i 2 {0, I + 1} and j 2 {0, J + 1}. In other words, we think of the boundary conditions (30) as
holding just outside the actual boundary of the state space.

If we discretize equation (18) in this way, we obtain a linear system of I ⇥ J equations in the
I ⇥ J unknowns Vij. And the discretized boundary conditions (30) inform the behavior of V at the
hypothetical exterior nodes. To be more concrete, consider the grid points x1j and the derivative
(D�

k V)1j = (V1j � V0j)/Dk using the backward stencil. The problem is, of course, that we do not
have sufficient information in the I ⇥ J system of linear equations to tell us anything about V0j,
which is our hypothetical exterior node. Discretizing the boundary condition (30) at the grid points
x1j yields

B(x1j, V1j, V0j) = 0 (31)

for all j. The term V0j shows up because it is used in the finite-difference discretization we consider
for Vk. The equations (31) provide the additional information to pin down V0j, which we then use
in the I ⇥ J linear system (27) that discretizes the differential equation itself.

The following result is trivial but worthy of emphasis.

Lemma 8. Under any linear finite-difference stencil, the boundary condition B(·) defined in equation (30)
is invertible. Its discretization can therefore be used to solve explicitly for the implied exterior nodes in all
dimensions.

Under Lemma 8, it follows that we can invert the discretized boundary condition to solve explicitly
for V0j, which we denote V0j = b(x1j, V1j). Crucially, this allows us to redefine the standard
backward finite-difference stencil at k1 as (D�

k V)1j = V1j/Dk � b(x1j, V1j)/Dk, which is now pinned
down in terms of V1j. The same argument applies for other stencils and in the other dimensions.
Therefore, we have successfully substituted out all exterior nodes and re-expressed all finite
difference stencils in terms of only those grid points xij which are on the grid and, crucially, for
whose corresponding value Vij we have an equation in the linear system.

It is worth noting explicitly that while the exterior nodes {x0j, xJ+1 j, xi0, xI+1 0} serve an
important role in our treatment of boundary conditions, they never explicitly appear in the im-
plementation of the resulting linear system because we expressed them in terms of interior nodes
using equation (30).

Lemma 9. When b(·) is linear in the value function and all its derivatives, then we can compute boundary-
adjusted finite-difference matrices outside of the value function iteration step using

∂jV ⇡ D
int
j V + (D

bound
j V + constj). (32)

38



Intuitively, Lemma 9 establishes that, for a broad class of boundary conditions, we can solve for the
implied function values on exterior ghost nodes in terms of the interior nodes, and then modify
the finite-difference matrices accordingly. In the discretization of the partial derivative ∂j on the
compact state space X̄ in equation (32), D

int
j is the same standard finite-difference matrix we have

used thus far in Sections 2 and 3, Dj, except that we set the rows corresponding to nodes on the
boundary to 0. The second term in equation (32), D

bound
j V + constj, returns the derivative values

on the boundary. In particular, a constant term constj may be necessary here for some types of
boundary conditions, e.g., the von-Neumann boundary condition ∂jV(x) = k(x) for x 2 ∂X̄ . We
discuss this further in Section 4.3.

Lemma 9 suggests a two-step procedure: First, we discretize all boundary conditions (30) and
use them to derive a linear solution for the function values V on the exterior ghost nodes. Second,
we solve the I ⇥ J linear system (27) using the boundary-adjusted finite-difference matrices (32).

The main limitation of Lemma 9 is when b(·) depends on prices or other endogenous variables
that depend on the value function. When the conditions of Lemma 9 are not satisfied, then the
finite-difference matrices must be re-computed in each iteration n of the algorithm as functions of
the current value function guess V

n. For expositional simplicity, we assume in the following that
Lemma 9 is satisfied.

With these boundary-adjusted finite-difference matrices in hand, we can now extend the finite-
difference scheme (21) to the entire grid over the compact state space X̄ , even though equation (18)
is only formally defined on the interior. This results in the following finite-difference scheme

1
Dt

(V n+1 � V
n) + rV

n+1 =u
⇣

c
n
⌘
+
⇣

F � c
n � dk

⌘⇣
D

int
k V

n+1 + D
bound
k V

n+1 + constk

⌘
(33)

� qz

⇣
D

int
z V

n+1 + D
bound
z V

n+1 + constz

⌘

+
s2

2

⇣
D

int
zz V

n+1 + D
bound
zz V

n+1 + constzz

⌘
,

where D
bound
k , D

bound
z , and D

bound
zz , as well as constk, constz, and constzz, depend on the types of

boundary conditions used. For the neoclassical growth model, we use von-Neumann boundary
conditions at k 2 {0, k̄} that ensure households do not save (dissave) at the right (left) boundary of
the capital grid, as well as reflecting boundaries at z 2 {z, z̄}. For further discussion, see Section
4.3.

The local truncation error of this boundary-adjusted finite-difference scheme is now given by
tn

l,i = tn(xl,i), with

tn(k, z) =
1

Dt
(Vn+1(k, z)� Vn+1(k, z)) + rVn+1(k, z)� u

⇣
cn(k, z)

⌘
(34)

�
⇣

F(k, z)� cn(k, z)� dk
⌘

DBC
k � Vn+1(k, z) + qzDBC

z � Vn+1(k, z)� s2

2
DBC

zz � Vn+1(k, z),
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where DBC
k , DBC

z , and DBC
zz denote the operator analogs of equation (32). As before, the LTE evaluates

the finite-difference scheme by plugging in the true function values Vn+1(k, z). Crucially and unlike
our discussion in Section 2, we have now formally characterized the J ⇥ 1 vector tn = {tn

l,i} over
the entire grid, including the boundary nodes.

Proposition 10. (Boundary-Adjusted Finite-Difference Scheme on Uniform Grids) Let G be a
uniform grid with mesh size h over the compact state space X̄ including its boundary ∂X̄ . Construct
the sequence {V

n}, where V
n 2 R J , recursively according to (33) using the boundary-adjusted standard

finite-difference matrices defined in (32). Then the local truncation error defined in (34) converges uniformly,
with tn

l,i ! 0 as l ! • and Dt ! 0.

The remainder of Proposition 4 extends to the boundary-adjusted scheme as well.24 On uniform
grid, the discretization scheme based on standard finite differences can therefore be extended to
the entire grid over the compact state space, including its boundaries, by directly encoding the
boundary conditions (30) in the finite-difference matrices.

4.2 Boundary Conditions on Sparse Grids

We now show that the strategy we outline above generalizes to sparse grids.

Definition 8. (Boundary-Adjusted Sparse Finite-Difference Matrices) The first- and second-order
sparse finite-difference matrices are defined as

D
±, S-bc
j = Ej (D

±, int
j + D

±, bound
j ) Hj and D

S-bc
jj = Ej (D

int
jj + D

bound
jj ) Hj, (35)

where D
int
• and D

bound
• are the boundary-adjusted standard finite-difference matrices introduced in (32), and

E• and H• are hierarchization matrices.

With the sparse finite-difference matrices appropriately extended to the grid boundary, we can now
write down a consistent finite-difference scheme for sparse grids. Let

V
n+1 � V

n

D
+ rV

n+1 = u
⇣

c
n
⌘
+
⇣

F � c
n � dk

⌘ ⇣
D

S-bc
k V

n+1 + constk

⌘
(36)

� qz

⇣
D

S-bc
z V

n+1 + constz

⌘
+

s2

2

⇣
D

S-bc
zz V

n+1 + constzz

⌘
.

We again define the associated local truncation error as tn, S-bc
l,i . The following Proposition is the

main result of this section, showing that the boundary-adjusted sparse finite-difference scheme (36)
is consistent.

24 We are working on extending the proof to the remaining conditions of Proposition 4 in ongoing work.
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Proposition 11. (Consistency of Boundary-Adjusted Sparse Finite-Difference Scheme) Let G be
a regular sparse grid of level l over the compact state space X̄ , including its boundary ∂X̄ . Consider the
sequences of function values {V

n} and LTEs {tn, S-bc} defined by (36). Then:

(i) The boundary-adjusted sparse finite-difference matrices D±, S-bc
j and DS-bc

jj , together with the con-
stant terms constj, lead to consistent discretizations of first- and second-order partial derivatives in
dimension j, including at the boundaries.

(ii) The boundary-adjusted sparse finite-difference scheme (36) is a consistent discretization of the HJB
equation (18) over the state space X̄ . That is, tn, S-bc

l,i ! 0 for all i 2 IH
l

and n as l ! • and Dt ! 0.

4.3 Types of Boundary Conditions

Representation (30) nests several types of boundary conditions encountered in economic applica-
tions. We briefly discuss the most prominent of these.

The von-Neumann boundary condition takes the form

∂xV(x) = k(x) , for x 2 ∂X̄ (37)

and specifies first-order partial derivatives along the boundary in terms of an exogenously given
function k : X̄ ! R. The most prominent example of a von-Neumann boundary condition in
macroeconomics is the borrowing constraint (Huggett, 1993; Aiyagari, 1994).

The reflecting boundary condition is a special case of the von-Neumann condition, with
∂xV(x) = 0. In economic terms, it signifies that the problem features no drift outside the boundary
of the state space. In practice it is often used as a default boundary condition for exogenous
processes such as earnings risk or productivity.

The Dirichlet boundary condition takes the form

V(x) = k(x) , for x 2 ∂X̄ . (38)

Unlike the von-Neumann condition, it directly specifies the level of the function V(·) along the
boundary. Dirichlet conditions appear in many economic applications. In life-cycle models, for
example, Dirichlet conditions are often used to pin down a terminal condition on lifetime utility at
the time of death. When computing transition dynamics, Dirichlet conditions are used as initial or
terminal conditions for the transition paths under consideration.

Finally, several economic applications feature boundary conditions that restrict the second-
order mixed derivatives. In asset pricing and portfolio choice problems, for example, frequently
feature boundary conditions of the form

∂xxV(x) = k(x)∂xV(x) , for x 2 ∂X̄ . (39)
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In the portfolio choice context, condition (39) may be used at the high-wealth boundary to encode
the asymptotically linear behavior of consumption for a class of utility functions (Achdou et al.,
2021).

5 Use Cases and Applications

In this section, we demonstrate the power of adaptive sparse grid methods across a wide range of
dynamic programming applications in economics.

5.1 High-Dimensional Dynamic Programming

Solving dynamic programming problems in high dimensions remains challenging due to the curse
of dimensionality (Bellman, 1961). The potentially greatest promise of adaptive sparse grid methods
in economics is their efficiency in high dimensions. Regular sparse grids reduce the complexity of a
grid in d dimensions from O(nd) to O(n · log(n)d�1), where n is the number of unique nodes per
dimension (Zenger, 1991; Bungartz, 1992). Adaptive sparse grids can achieve significant further
efficiency gains by refining grids adaptively based on the underlying economic application.

High-dimensional dynamic programming applications abound in economics. One rapidly
growing area of research, for example, studies the implications of cross-sectional heterogeneity.
Globally solving dynamic general equilibrium models with rich heterogeneity remains a serious
challenge, however: Heterogeneous-agent models often feature a high-dimensional state space
because, in general equilibrium, the entire cross-sectional distribution of agents becomes part of
the aggregate state of the economy. Nevertheless, global solutions are necessary to study many
economic applications such as uncertainty, asset pricing, and occasionally binding constraints that
give rise to crisis regions.

We illustrate the power of adaptive sparse grids to tackle dynamic programming problems in
high dimensions by computing a high-dimensional, global solution of the benchmark Krusell and
Smith (1998) model. In particular, we employ the algorithm proposed by Schaab (2020) to solve
the model with a 14-dimensional distribution representation. The power of adaptive sparse grids
allows us to compute this global solution of the model and its simulation on a 17-dimensional state
space in less than 5 minutes on a personal computer.

Model. There is a continuum of households with preferences over consumption, given by
E0

R •
0 e�rtu(ct)dt, where r is a common discount rate and ct the rate of consumption. House-

holds face both uninsurable idiosyncratic risk in the form of unemployment spells and aggregate
risk. Insurance markets are incomplete but households can trade capital, which they rent to firms.
A household’s budget constraint is given by k̇t = (rk

t � d)kt + (1 � t)wtzt + tUI(zt)� ct, subject to
the short-sale constraint kt � 0, where rk

t � d is the rental rate of capital net of depreciation, t is a
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labor income tax, and tUI(zt) is unemployment insurance. We assume that zt follows a two-state
Poisson process.

A representative and perfectly competitive firm uses capital and labor to produce the final
consumption good according to the aggregate production function Yt = eZt Ka

t N1�a
t , where Zt is

aggregate TFP, and Kt and Nt denote the aggregate capital stock and labor, respectively. a denotes
the income share of capital. Under perfect competition, factor prices are simply given by rk

t = a Yt
Kt

and wt = (1 � a)Yt
Lt

.
The role of the government is to provide unemployment insurance, which it funds via income

taxation. We solve residually for the income tax rate t so that the government budget is balanced.
Since the process zt is stationary, the unemployment rate in this model is constant by a law of large
numbers argument, so the required labor tax rate is also time-invariant. The markets for capital,
labor and the consumption good must clear at all times.

Recursive representation and state space. Aggregate uncertainty in this environment derives
from the aggregate productivity process Zt, which follows the mean-reverting process dZt =

�qZtdt + sdBt, where Bt is standard Brownian motion. We denote by gt(k, z) the joint density of
households over capital and earnings. In general equilibrium, households must forecast prices
which, in turn, depend on the realization of future cross-sectional distributions. As a result, the
aggregate state of our economy is (Zt, gt). The state space of the household’s dynamic problem is
then given by (kt, zt, Zt, gt).

To reduce the dimensionality of the dynamic programming problem, we follow Schaab (2020)
and posit a high- but finite-dimensional approximation of the cross-sectional distribution, given by

gt(k, z) ⇡ ĝt(k, z) = F(at)(k, z),

where F is a set of basis functions that are parametrized by at 2 RN . As in Schaab (2020), we
solve a sequence of approximate economies, in which households form expectations as if future
cross-sectional distributions were given by ĝt(k, z). Increasing N and choosing a flexible class of
basis functions allows for an increasingly accurate representation gt(k, z) ⇡ F(at)(k, z). Crucially,
the state variables of the household problem are now given by (kt, zt, Zt, at), implying a 3 + N-
dimensional state space. We leverage adaptive sparse grids to solve the resulting high-dimensional
dynamic programming problem.

Calibration. On the household side, we calibrate r = 0.05 and assume isoelastic preferences
with u(c) = 1

1�g c1�g and coefficient of relative risk aversion g = 2. Households face uninsurable
earnings risk encoded in the two-state Markov process zt 2 {zE, zU}. We model zt using a Poisson
process with arrival rates l(z). For simplicity, we set zE = 1.2 and zU = 0.8, as well as l(zE) =

l(zU) = 1/3. Similarly, we set t = tUI(z) = 0. For aggregate TFP risk, we set q = 0.05 and
s = 0.007. On the production side, we calibrate a capital share of a = 0.33 and set the rate of capital
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Figure 12: Adaptive Sparse Grids in High-Dimensions

Note. Figure 12 plots a global solution of the Krusell and Smith (1998) model using the projection algorithm of Schaab
(2020), parameterizing the joint density over capital and earnings with 14 Chebyshev polynomials. The solid blue line
corresponds to a simulated time path of aggregate capital, Ksim

t . The dashed yellow line corresopnds to an unconditional
and out-of-sample forecast of aggregate capital by households, denoted Klom

t , observing only the initial state of the
economy and the sequence of realized TFP shocks. The distance between these two sequences is proportional to the Den
Haan (2010) error metric eDH

K .

depreciation to d = 0.05.
While Schaab (2020) develops a non-parametric estimation algorithm to choose an efficient

set of basis functions F(·), we simply use Chebyshev polynomials here for illustration. We set
N = 14, so that the marginal distribution of capital holdings for each earnings type j, gt(k, zj),
is approximated by 7 Chebyshev polynomials. Time variation in the underlying cross-sectional
distribution is captured by the time-varying basis function coefficients at.

Performance and Accuracy. Figure 12 presents the numerical solution of the model. We initialize
the economy at the stationary equilibrium without aggregate uncertainty at time t = 0 and simulate
the economy under a sequence of aggregate TFP shocks. The blue solid line corresponds to the
time series of aggregate capital, denoted Ksim

t . The dashed yellow line, on the other hand, plots
an unconditional and out-of-sample time-0 forecast by households, denoted Klom

t . When making
this forecast, households only observe the initial state of the economy and the realized sequence of
aggregate TFP shocks.25

25 The first simulation of the model, which yields Ksim
t , updates the cross-sectional household distribution gsim

t at
each time step by directly simulating the consumption and savings decisions of households at the micro level. This
corresponds to a kind of Monte Carlo simulation. In discrete time, the Young (2010) algorithm is typically used for
this, whereas in continuous time we can directly use the Kolmogorov forward equation. When computing households’
unconditional forecast Klom

t , on the other hand, we directly use dat to compute dĝt to simulate the approximate
distribution according to households’ perceived law of motion.
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To assess the accuracy of our solution method, we compute the Den Haan (2010) metric of our
model solution, which is defined as eDH

K = 100 ⇥ maxt log{Klom
t � Ksim

t }. We can interpret eDH
K as

the largest percentage error in an unconditional forecast of capital given the realized draw of shocks
{Zt}. When eDH

K is small, household beliefs are, by construction, consistent with the true law of
motion of the economy, which is the required condition for a rational expectations equilibrium.
Simulating the model based on a numerical solution with 14 Chebyshev polynomials achieves an
accuracy metric of eDH

K = 0.152, which implies that the largest unconditional household forecast
error is 0.15%. The entire solution and simulation of the model takes less than 5 minutes on a
personal computer.26

5.2 Occasionally-Binding Constraints

Dynamic optimization problems in economics are often subject to constraints, such as collateral or
borrowing constraints, due to which the value function becomes substantially more concave in one
(often small) region of the state space. In other words, an agent’s behavior is often substantially
more sensitive to small changes in fundamentals when that agent is close to an occasionally-binding
constraint. Sparse grid methods excel in such environments because grid points are added in the
high-concavity region. We illustrate this in the Aiyagari (1994) model. Further details are presented
in Appendix H.2.

We illustrate the power of adaptive sparse grids to handle occasionally-binding constraints in
the context of the benchmark Aiyagari (1994) model with borrowing constraint.

Model. There is a continuum of households with preferences over consumption given by

V0 = E0

Z •

0
e�rtu(ct)dt (40)

where ct denotes the rate of consumption and r is a constant discount rate. Households can
accumulate a stock of capital kt and face the budget constraint

k̇t = (rt � d)kt + wtezt � ct, (41)

where r is an exogenously given, constant real interest rate, and zt captures idiosyncratic earnings
risk. Capital depreciates at rate d. Household labor supply is implicitly taken as exogenous and
normalized to 1, so that wtezt corresponds to labor income, where wt is the real wage rate. In
particular, we assume that a household’s idiosyncratic labor productivity follows a mean-reverting
diffusion process, with

dzt = �qztdt + sdBt, (42)

26 We use a 2019 16-inch MacBook Pro, with a 2.4 GHz 8-Core Intel i9 processor and 32 GB memory.
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Figure 13: Adaptive Sparse Grids and Occasionally-Binding Constraints

Note. Figure 13 presents the numerical solution of the Aiyagari (1994) model with an occasionally-binding borrowing
constraint. Panel (a) displays the stationary value function V(k, z) on an adaptive sparse grid that starts with a
uniform grid of level l

0 = (5, 2) and refines 8 times. Panel (b) plots the convergence rates of numerical errors in the
Lj

• = max |Vfine � Vj| norm for a sample of 30, 000 grid points, where Vfine is a solution of the value function on a
uniform grid with 2.1 million grid points. {Vj} corresponds to a sequence of numerical solutions on increasingly fine
uniform, regular sparse, and adaptive sparse grids. We start with a uniform grid of level l

0 = (5, 2) in each case and plot
5 successive refinement levels. For adaptive grid refinement, we use thresholds eadd = 10�5 and ekeep = 10�6.

where Bt is a standard Brownian motion that is uncorrelated across households. Finally, households
face an ad-hoc borrowing constraint of the form

kt � 0. (43)

A representative and perfectly competitive firm operates the production technology Yt =

Ka
t L1�a

t , where Kt and Lt denote the aggregate capital stock and labor, respectively. Factor prices
are given by rk

t = a Yt
Kt

and wt = (1 � a)Yt
Lt

.
We compute the stationary equilibrium where all macroeconomic aggregates are constant.

The markets for consumption goods and capital must clear at all times.

Recursive optimization problem. The household’s problem is to choose consumption to maxi-
mize (40) subject to (41), (42), and (43). As in Section 2, this dynamic optimization problem admits
a recursive representation, with capital and earnings as the two state variables. In the stationary
equilibrium with constant interest and wage rates, i.e., rt = r and wt = w, the value function solves
the stationary Hamilton-Jacobi-Bellman equation

rV(k, z) = u(c(k, z)) +
⇣

rk + wez � c(k, z)
⌘

∂kV(k, z)� qz∂zV(k, z) +
s2

2
∂zzV(k, z), (44)
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where the consumption policy function is defined by the first-order condition

u0(c(k, z)) = ∂kV(k, z). (45)

While equations (44) and (45) hold everywhere in the interior of the state space, a state constraint
boundary condition characterizes the value function at the borrowing constraint (Achdou et al.,
2021),

u0(rk + wez) � ∂kV(k, z)

for all z. This boundary inequality ensures that households never dissave at the borrowing
constraint.

Calibration. We solve for the stationary household value function V(k, z) on a grid over capital,
k 2 [0, k̄] and earnings z 2 [z, z̄], where we set k̄ = 50, z = 0.3 and z̄ = 1.5. The household discount
rate is r = 0.02. We adopt CRRA utility, with u(c) = 1

1�g c1�g, and set the coefficient of relative risk
aversion to g = 2. On the firm side, we set a = 0.33 and d = 0.05. Finally, we calibrate the earnings
process with q = 0.25 and s = 0.02.

Numerical analysis. We numerically solve this variant of the Aiyagari (1994) model on sequences
of uniform grids, regular sparse grids, and adaptive sparse grids. To assess the accuracy of the
numerical solution in each case, we compare the resulting value function to a benchmark solution
computed on a fine, uniform grid with over 2 million grid points.27

Figure 13 plots the household value function V(k, z) on an adaptive sparse grid in panel
(a). The grid adaptation procedure places grid points near the occasionally-binding borrowing
constraint, especially at low earnings levels. Household behavior in this region is highly sensitive to
marginal changes in wealth and earnings, and the value function consequently becomes increasingly
non-linear near the constraint. On the other hand, the procedure removes grid points from other
regions of the state space. This is particularly obvious in the high-wealth region, where the value
function becomes increasingly linear as a function of both capital and earnings.

Panel (b) plots the L• error convergence relative to the number of grid points used on the
uniform, regular sparse, and adaptive sparse grids. The error decays slowly on the uniform grid
and only slightly more quickly for regular sparse grids. Even in this two-dimensional example, the
adaptive sparse grid registers substantial efficiency gains compared to alternative grid structures.
Concretely, a numerical solution on an adaptive sparse grid with 2, 840 grid points is as accurate as
a solution on a uniform grid with over 200, 000 grid points.

27 As discussed in Achdou et al. (2021), numerical analysis in continuous time has no analog to the Euler condition
error that is used in discrete time to evaluate the approximation error in dynamic programming applications. To assess
the accuracy of our numerical solutions, we use as a reference the solution of the model on a very large, uniform grid
with over 2 million grid points. This approach becomes inapplicable in higher dimensions, which in part motivates our
focus on two-dimensional applications.
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Figure 14: Adaptive Sparse Grids and Non-Convexities

Note. Figure 14 presents the numerical solution of the Aiyagari (1994) model with an occasionally-binding borrowing
constraint and a non-convex capital income tax schedule. Panels (a) and (b) display the stationary value and consumption
policy functions, V(k, z) and c(k, z) on an adaptive sparse grid that starts with a uniform grid of level l

0 = (5, 2) and
refines 6 times. The non-convex income tax schedule results in a discontinuity in c(k, z) and a kink in V(k, z) at k = k⇤.
Panel (c) plots the convergence rates of numerical errors in the Lj

• = max |Vfine � Vj| norm for a sample of 30, 000 grid
points, where Vfine is a solution of the value function on a uniform grid with 2.1 million grid points. {Vj} corresponds
to a sequence of numerical solutions on increasingly fine uniform, regular sparse, and adaptive sparse grids. We start
with a uniform grid of level l

0 = (5, 2) in each case and plot 5 successive refinement levels. For adaptive grid refinement,
we use thresholds eadd = 10�5 and ekeep = 10�6.

5.3 Non-Linearities, Non-Convexities, and Kinks

Adaptive sparse grids are especially useful in the context of applications that exhibit non-convexities
in agents’ behavior. To illustrate this, we again consider a variant of the Aiyagari (1994) model and
introduce a non-convex capital income taxation schedule.28

Model and calibration. The model is similar to that in Section 5.2, except that the household’s
budget constraint now takes the form

k̇t =
⇣

1 � T(kt)
⌘

rkt + ezt � ct,

where T(kt) is a capital income tax schedule given by

T(kt) =

8
<

:
0 if k  k⇤

k if k > k⇤

Wealthy households pay a constant marginal tax rate k on financial income, while poorer households
face no tax. For illustration, we set k = 0.02 and k⇤ = 27 and otherwise adopt the same calibration
also used above in Section 5.2.

28 This application is also used in the review article on adaptive sparse grids by Brumm et al. (2022).
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Numerical analysis. Panels (a) and (b) of Figure 14 again display a numerical solution of the
value and consumption policy functions on an adaptive sparse grid. As before, the adaptation
procedure adds grid points near the borrowing constraint. In the presence of a non-convex tax
schedule, the consumption policy function c(k, z) exhibits a jump at k = k⇤ while the value function
V(k, z) features a kink. Relative to Figure 13, grid adaptation also adds grid points near k⇤, where
the value function now exhibits larger concavity. Panel (c) demonstrates the relative efficiency of
adaptive sparse grids relative to both uniform and regular sparse grids in the context of this model
with borrowing constraints and non-convexities.

5.4 Finite Horizons, Life-Cycle, and Overlapping Generations

Many economic applications feature finite horizons, including life-cycle and overlapping gener-
ations models. Such problems are typically solved by explicitly iterating over the time or age
dimension, effectively solving a partial differential equation for every discretized time point. In
practice, this often becomes the most computationally intensive step of the algorithm.

Adaptive sparse grids can substantially reduce the computational burden of life-cycle applica-
tions by simply adding age as an additional state variable or dimension. This approach has three
key advantages: First, adaptive grid refinement efficiently places grid points in the age dimension
where value and policy functions feature most non-linearity, typically near the boundaries. As we
illustrate below, accurately characterizing agents’ behavior in the retirement region often requires
substantially more grid points than elsewhere.

Second, treating age as an additional dimension allows sparse grid methods to further reduce
grid density by drawing on off-dimensional information. Under the standard approach, we
construct a grid of J nodes in the n � 1 dimensions excluding age and then explicitly iterate over
the N points used to discretize the age dimension. This results in a “grid” of complexity J ⇥ N
because the age dimension is effectively treated as a uniform grid. Even if we already use a sparse
grid of size J for the n � 1 dimensions excluding age, substantial efficiency gains can be realized by
not iterating separately over age and instead discretizing all n dimensions jointly on a sparse grid.

Third, modeling age as just another dimension in our partial differential equation also allows
us to us implicit and semi-implicit rather than explicit time marching schemes. In practice, the
number of iterations required for VFI convergence under a semi-implicit scheme is small. For the
model we show below, VFI convergence requires 7 iterations in n � 1 dimensions excluding age
and only 10 when adding age as an nth dimension. The standard approach instead requires first
solving for the value function at one of the boundaries and then explicitly iterating N times, where
N is the number of points used to discretize the age dimension.

We illustrate the power of adaptive sparse grids for finite-horizon problems in the context of a
simple one-asset life-cycle model. Further details are presented in Appendix H.5.

49



Model. The model is again similar to the Aiyagari (1994) variant presented in Section 5.2, except
that we introduce a life-cycle. We denote the age of a household by at 2 [a, ā]. We explicitly
distinguish between t, which indexes the flow of time in the economy, and at, which denotes the
age of a particular household at calendar time t. We interpret a as the start of working life and
ā as the time of death. Households that enter the economy at time 0 with a0 = a now face the
finite-horizon problem

V0 = E0

Z ā�a

0
e�rtu(ct)dt,

subject to the capital accumulation equation (41), the diffusion process for labor productivity (42),
the borrowing constraint (43), as well as the law of motion for the new state variable age, which is
trivially given by

ȧt = 1. (46)

Crucially, the household consumption policy function now depends on both calendar time t and
age a separately, that is, ct = ct(a, k, z).

Stationary equilibrium and recursive representation. As before, we focus on the stationary equi-
librium of this economy, where the production side is the same as in Section 5.2. All macroeconomic
aggregates are constant and we can drop calendar time t from the problem.

We seek a recursive formulation of the household’s finite-horizon problem with state variables
(a, k, z). Having introduced age as an additional state variable raises the question of boundary
conditions for the new boundaries a 2 {a, ā}. Since the evolution of age is given by (46), which is
a simple advection force, we only require one new boundary condition. Following Achdou et al.
(2021), we impose a terminal condition on the household’s lifetime value at death, a = ā, given by

V(ā, k, z) = e1u(e2 + k). (47)

This represents a Dirichlet boundary condition (see Section 4).
In the interior of the state space, the household’s lifetime value now solves the HJB equation

rV(a, k, z) = u(c(a, k, z)) + ∂aV(a, k, z) +
⇣

rk + wez � c(a, k, z)
⌘

∂kV(a, k, z) (48)

� qz∂zV(a, k, z) +
s2

2
∂zzV(a, k, z),

implying a first-order condition for consumption given by u0(c(a, k, z)) = ∂kV(a, k, z).

Calibration. We set a = 25 as the start of working life and ā = 80 as the time of death. For the
new terminal condition for the household’s lifetime value at death, we set e1 = 10�8 and e2 = 10�5.
Since visually illustrating grid structures is easiest in two dimensions, we model earnings risk as a
two-state Markov chain, with zt 2 {zL, zH} and Poisson transition rates l = 1/3 out of both states.
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Figure 15: Adaptive Sparse Grids and Life-Cycle / OLG Economies

Note. Figure 14 presents the numerical solution of a life-cycle variant of the Aiyagari (1994) model. Panel (a) plots the
stationary value function V(a, k, zL) for the low-earnings type on a uniform grid of level l = (5, 5). Panel (b) displays
the solution on an adaptive sparse grid that starts with a uniform grid of lebel l

0 = (5, 5) and adapts 10 times, using
thresholds eadd = 5 · 10�4 and ekeep = 5 · 10�6.

This allows us to cleanly illustrate the value function for a discrete earnings state as we do in Figure
15. The remainder of the calibration is as in Section 5.2.

Numerical analysis. In Figure 15, we plot the numerical solution of the stationary household
value function for the low earnings type, V(a, k, zL). Panel (a) plots the solution on a uniform grid
while panel (b) exhibits an adaptive sparse grid featuring roughly the same number of grid points.
It is again obvious how the grid adaptation procedure removes grid points from regions where
the value function is approximately linear, while adding them to regions featuring substantial non-
linearity. In this application, accuracy of the numerical solution requires increasing the grid density
near the retirement boundary substantially. In fact, it is evident from panel (a) that a uniform age
grid leads to substantialy approximation error given the terminal condition at retirement.

5.5 Free Boundary Problems

Adaptive sparse grids excel in the context of free boundary problems for two reasons. First, the
value and policy functions of agents typically become increasingly non-linear close to the free
boundary. Grid adaptation therefore allows us to place additional grid points close to the free
boundary, while removing them from other regions where economic behavior is not as sensitive
to changes in fundamentals. Second, once the free boundary is identified in the state space, the
solution of the dynamic programming problem no longer depends on information from outside the
free boundary. Grid adaptation allows us to drop most of the grid points outside the free boundary
for additional efficiency gains.

We illustrate both of these features in the standard stopping time problem where a firm
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Figure 16: Adaptive Sparse Grids and Free Boundaries

Note. Figure 16 presents the numerical solution of the firm stopping time problem on an adaptive sparse grid that starts
with a uniform grid of level l = 5 and adapts 8 times, using thresholds eadd = 10�5 and ekeep = 10�6. The blue dots
correspond to the firm value function V(x) for productivity levels x 2 [0.1, 1]. The yellow dots correspond to the firm’s
scrap value S(x) = 10. The free boundary, at which the firm exits and shuts down its plant, takes the value x⇤ = 0.23.

optimally decides when to close its production plant. We follow the formulation of Achdou et al.
(2021).

Model. Firm productivity xt evolves according to the diffusion process

dxt = µ(xt)dt + s(xt)dBt, (49)

where dBt is a standard Brownian motion, and µ(·) and s(·) correspond to the potentially state-
contingent drift and volatility of the process. The firm’s lifetime value in state x0 is defined by

V(x0) = max
t

E0

Z t

0
e�rtu(xt)dt + e�rtS(xt), (50)

where t is the optimal stopping time of plant closure. While the plant is operating, the firm obtains
cash flows u(xt) given productivity xt, which it discounts at rate r. Finally, at the time of plant
closure t = t, the firm realizes a scrap value S(xt).

The firm’s problem is to maximize its lifetime value (50) by choosing optimally the time of
plant closure t, taking as given the evolution of productivity (49). This problem admits a recursive
representation in the form of the Hamilton-Jacobi-Bellman variational inequality

rV(x) = max
n

u(x) + µ(x)∂xV(x) +
s(x)2

2
∂xxV(x), rS(x)

o
, (51)

where S(x) is the outside option of plant closure in state x.
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Calibration. We set the firm’s discount rate to r = 0.05 and adopt a CRRA functional form for
utility, with u(x) = 1

1�g x1�g, with coefficient of relative risk aversion g = 0.5. We set the firm’s
outside option, or plant scrap value, to S(x) = 10. Finally, we choose a constant productivity drift
of µ(x) = �0.1 and volatility s(x) = 0.01x.

Numerical analysis. Figure 16 plots the numerical solution of the firm value function V(x) on
an adaptive sparse grid. The endogenous free boundary is at x⇤ = 0.23. Figure 16 illustrates two
important features of the adaptive sparse grid solution of this optimal stopping time problem. First,
the value function becomes increasingly non-linear close x⇤, and the grid adaptation procedure
consequently places a large number of grid points in this region. On the other hand, firm value
V(x) becomes increasingly linear away from the free boundary, allowing us to reduce grid density
in other regions of the state space.

Second, the adaptive sparse grid removes nearly all grid points in the interval [0.1, x⇤), which
results in substantial efficiency gains relative to a uniform grid. Once the free boundary is identified,
solving the firm’s stopping time problem requires no information about the economy outside the
free boundary. That is, the Hamilton-Jacobi-Bellman equation (51) does not require solving for the
firm value — or, indeed, the scrap value — in the interval [0.1, x⇤).

6 The SparseEcon Dynamic Programming Repository

An online repository accompanies this paper, providing pedagogical code and tutorials for many
prominent dynamic programming applications across several fields of economics, including macroe-
conomics, asset pricing, industrial organization, and game theory. This repository is available at
https://github.com/schaab-lab/SparseEcon. Our hope is that our repository will help make
our method broadly accessible.

7 Conclusion

In this paper, we propose a new approach to dynamic programming in continuous time leveraging
adaptive sparse grids. We develop a sparse finite-difference method and a value function iteration
algorithm that are robust across a broad class of non-uniform grids. Our algorithm automatically
adapts the grid and adds local resolution in regions of the state space where the value function ap-
proximation error remains large. We demonstrate the power and versatility of our approach across
a wide range of applications in economics that feature high-dimensional state spaces, occasionally-
binding constraints, life-cycles and overlapping generations, kinks and non-convexities, discrete
choice, free boundaries, and dynamic games.
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