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Abstract

Solving dynamic economicmodels that capture salient real-world heterogeneity and non-linearity requires
the approximation of high-dimensional functions. As their dimensionality increases, compute time and
storage requirements grow exponentially. Sparse grids alleviate this curse of dimensionality by substantially
reducing the number of interpolation nodes, that is, grid points needed to achieve a desired level of accuracy.
The construction principle of sparse grids is to extend univariate interpolation formulae to the multivariate
case by choosing linear combinations of tensor products in a way that reduces the number of grid points
by orders of magnitude relative to a full tensor-product grid and doing so without substantially increasing
interpolation errors. The most popular versions of sparse grids used in economics are (dimension-adaptive)
Smolyak sparse grids that use global polynomial basis functions, and (spatially-adaptive) sparse grids with
local basis functions. The former can economize on the number of interpolation nodes for sufficiently
smooth functions, while the latter can also handle non-smooth functions with locally distinct behavior such
as kinks. In economics, sparse grids are particularly useful for interpolating the policy and value functions of
dynamic models with state spaces between two and several dozen dimensions, depending on the application.
In discrete-time models, sparse grid interpolation can be embedded in standard time iteration or value
function iteration algorithms. In continuous-time models, sparse grids can be embedded in finite-difference
methods for solving partial differential equations like Hamilton-Jacobi-Bellman equations. In both cases,
local adaptivity, as well as spatial adaptivity, can add a second layer of sparsity to the fundamental sparse-
grid construction. Beyond these salient use-cases in economics, sparse grids can also accelerate other
computational tasks that arise in high-dimensional settings, including regression, classification, density
estimation, quadrature, and uncertainty quantification.
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Introduction

High-dimensional economic problems. Dynamic economic modeling has for a long time heavily relied on
two very convenient methodological approaches: First, maintaining assumptions that ensure the existence of
representative households and firms. Second, approximating the dynamics of a model only locally around its
steady state. Yet, being aware of the limitations of these approaches, economists have also gone beyond those
by including meaningful heterogeneity in their models and by employing global solution methods. Doing both
at the same time, however, remains a formidable challenge. The reason is that the computational cost of naive
global solution methods increases exponentially with the dimensionality of the model, which in turn depends
on the amount of heterogeneity included. This obstacle is referred to as the curse of dimensionality [Bellman,
1961]. This article explains how sparse grid (SG) methods can alleviate this problem. First of all, let us
characterize the problem more formally.

The dynamics of economic models can often be captured by recursive equilibria [Stokey et al., 1989,
Ljungqvist and Sargent, 2004] where the potentially high-dimensional state variable, G ∈ - ⊂ R3 , represents
the state of the economy, 3 is the dimensionality of the state space, and a time-invariant equilibrium function,
5 : - → . ⊂ R<, < ∈ N, captures the model dynamics and can be characterized as the solution to a functional
equation that reads:

E( 5 ) = 0. (1)

This abstract description nests characterizations of recursive equilibria in discrete time, where 5 is the value
function, and the operator E captures the Bellman equation it has to satisfy—or the Hamilton-Jacobi-Bellman
(HJB) equation in continuous time. It also nests characterizations where E captures discrete-time first-order
equilibrium conditions, and where 5 is the (multi-dimensional) policy function.1 No matter which of these
characterizations is used, the curse of dimensionality bites as soon as - is of moderate dimension, E represents
equilibrium conditions of a non-linear model, and a global solution is required. In contrast to a local solution,
which relies on equilibrium conditions (and their derivatives) at a single point in the state space, a global
solution aims to satisfy the equilibrium conditions throughout the state space. A grid-based solution that relies
on a tensor-product construction will require "3 points when " points are needed in each dimension. As this
exponential growth makes tensor-product grids infeasible as soon as " and 3 reach moderate levels (say 3 > 3),
there are basically two ways to proceed: Grid-free approximation methods and SG methods.2 Figure 1 provides
a classification of solution methods for dynamic economic models.

Sparse grid methods. SG methods are a very efficient and systematic way to tackle the numerical difficulties
that arise in dynamic economic models with high-dimensional state spaces. While there exists a vast body of
literature on howSGs can be constructed,3 all approaches share the following fundamental construction principle:
univariate interpolation formulae are extended to the multivariate case by choosing linear combinations of tensor
products in a way that reduces the number of support nodes (that is, grid points) by orders of magnitude relative
to an entire tensor-product grid without substantially worsening interpolation errors, thereby alleviating the
curse of dimensionality. The most fundamental distinction between the various SG techniques proposed in the
literature is between those using basis functions with local support and those using global basis functions. This
article refers to these as i) local sparse grid (LSG) and ii) global sparse grid (GSG) techniques, respectively.

1For a thorough review on how to numerically solve dynamic models in general, see the excellent handbook chapter by Maliar and
Maliar [2014].

2Grid-free approaches have been proposed, e.g., by DenHaan andMarcet [1990],Maliar andMaliar [2014] and have recently become
more powerful by leveraging developments in machine learning—see for instance Duffy andMcNelis [2001], Norets [2012], Maliar et al.
[2021], Azinovic et al. [2019], Fernández-Villaverde et al. [2019], Scheidegger and Bilionis [2019], Duarte [2018], Ebrahimi Kahou
et al. [2021], Renner and Scheidegger [2018]. We doubt, however, that SGs will be replaced entirely by any of those methods anytime
soon. In contrast to most machine learning approaches, SGs have well-understood convergence properties. They can help researchers to
scale up any model (if numerically formulated on a grid) to higher dimensions without the need to replace the entire solution technique.
Furthermore, they can relatively easily be parallelized [Brumm et al., 2015], which can speed up the time-to-solution by orders of
magnitude. So, all in all, SGs can provide a relatively straightforward way to scale up existing modeling and solution frameworks and,
in turn, provide a simple means to extend the boundaries of research.

3These include the Smolyak algorithm (see Smolyak [1963]), the classical SG method (see, e.g., Zenger [1991], Bungartz and
Griebel [2004], and references therein), the combination technique (see, e.g., Griebel et al. [1992], Obersteiner and Bungartz [2021]),
and dimension- as well as spatially-adaptive methods (see, e.g., Nobile et al. [2008], Pflüger [2010], and references therein).

Electronic copy available at: https://ssrn.com/abstract=3979412



3

Overview of Numerical Solution Methods

Solution Methods
for dynamic economic models

Local Solution
e.g. 2=3-order perturbation as in
Schmitt-Grohé and Uribe [2004]

Global Solution
adheres to equilibrium conditions

over the entire state space

Grid-Free Method
e.g. parameterized expectations algrorithm

as in Den Haan and Marcet [1990]

Grid-Based Method
based on grid of points
covering state space

Tensor-Product Grid
e.g. standard projection

methods as in Judd [1998]

Sparse Grid (SG)
grid grows less than

exponentially in dimension

Local Sparse Grid (LSG)
e.g. multi-linear hierarchical basis

as in Brumm and Scheidegger [2017]

Global Sparse Grid (GSG)
e.g. Lagrange-polynomial basis

as in Judd et al. [2014]

Figure 1 shows an overview of numerical solution methods for dynamic stochastic economic models with
popular examples. SG methods provide grid-based global solutions that do not suffer from the curse of
dimensionality like tensor-product grids. We distinguish between local sparse grids and global sparse grids
depending on whether the basis functions have local or global support.

LSGs are suitable for handling non-smooth functions with locally distinct behavior such as kinks, whereas GSGs
are more suitable for approximating smooth functions. For these two cases, the subsequent section presents the
specific methods that are arguably most useful and popular in economics: i) LSGs based on hierarchical, multi-
linear basis functions, and ii) GSGs based on Lagrange characteristic polynomials (to which the economics
literature often refers to as the Smolyak method). Throughout this review article, those methods are applied to
problems of relatively low dimension—for illustrative purposes and also to show that (adaptive) SGs are of high
added value even under such circumstances.

Sparse grids in economics and finance. In economics and finance, both GSGs and LSGs have gained
substantial popularity for solving and estimating high-dimensional models in both discrete and continuous time,
as this by no means complete survey of the literature shows.4 Krueger and Kubler [2004, 2006] introduced
GSG (the Smolyak SG) to economics in the context of (discrete-time) overlapping generations (OLG) models,
whereas Fernández-Villaverde et al. [2015] use that very same type of GSGs to study non-linear dynamics
in a New Keynesian model with a zero lower bound on the nominal interest rate. Judd et al. [2014] improve
the Smolyak method in various directions to substantially enhance its performance in economic applications.
LSGs were introduced to economics by Brumm and Scheidegger [2017] in the context of an international real
business cycle (IRBC) model with irreversible investment, and a menu-cost model that generalizes Midrigan
[2011]. Brumm et al. [2017] use LSGs to tackle annually-calibrated OLG models with aggregate shocks,
whereas Usui [2019] apply those grids to investigate rare natural disasters and adaptation decisions in a dynamic
stochastic economy in discrete time. Cao et al. [2020] use LSGs to solve (discrete-time) DSGE models with
strong nonlinear features. Recent work by Garcke and Ruttscheidt [2019] and Schaab and Zhang [2022]

4Besides economics and finance, SGs have a long-standing success story of enabling and accelerating the solution of a wide range of
computational problems in physics, chemistry, visualization, and data mining, including classification (see, e.g., Bungartz et al. [2008]),
density estimation and sampling (see, e.g., Frommert et al. [2010]), numerical quadrature (see, e.g., Holtz [2010], and references
therein), uncertainty quantification (see, e.g., Rehme et al. [2021]), partial differential equations in general (see, e.g., Babuška et al.
[2007], Gunzburger et al. [2014]), optimal control and HJB-type of problems (see, e.g., Bokanowski et al. [2013]) to name just a few.
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introduces continuous-time adaptive LSG methods to macroeconomics in the context of heterogeneous agent
models. Schaab [2020] solves HJB-type equations with LSGs to study the interaction between micro and macro
uncertainty in a globally solved heterogeneous agent new Keynesian model with aggregate risk, counter-cyclical
unemployment risk, and a zero lower bound constraint on monetary policy. In finance, a series of authors used
LSGs (both in discrete- as well as in continuous-time settings) to study, for instance, high-dimensional option-
pricing problems (see, e.g., Reisinger and Wittum [2007], Bungartz et al. [2012], Scheidegger and Treccani
[2018]) as well as dynamic portfolio choice models with transaction costs as in Schober et al. [2021]. Heiss
and Winschel [2008] integrate likelihood functions on GSGs. Winschel and Krätzig [2010] embed GSGs in a
Bayesian estimation framework, whereas Gilch et al. [2021] apply LSGs in the context of generalized method
of moments.

Goals and outline. The three main goals of this review article are as follows. First, to provide a concise
and accessible introduction to SGs focusing on those LSG and GSG techniques most commonly employed in
economic applications. Second, to illustrate the working of those methods by applying them to conceptually
simple yet computationally demanding economic test cases—an IRBC model with irreversible investment in
discrete-time and an Aiyagari [1994]-type model with a jump in the capital-tax rate in continuous time. Third,
to provide simple to use publicly available codes posted under the following link: https://github.com/
SparseGridsForDynamicEcon/SparseGrids_in_econ_handbook.

The remainder of this review is organized as follows: First, LSGs and GSGs are introduced. After that, a
section is dedicated to demonstrating how LSGs can be used to solve high-dimensional non-linear models in
discrete time settings, followed by a section that illustrates how LSGs can be applied to continuous-time models.
The conclusion briefly presents some of the most common drawbacks SGs can suffer from and discusses how
they can be overcome.

Sparse Grids in a Nutshell

Consider the task of approximating a (policy or value) function 5 : Ω → R which maps some input state
x ∈ R3 to some output value 5 (x), where 3 is the dimensionality of the problem at hand. When 3 is larger than
one, yet of moderate size (e.g., 3 < 4), such problems are often solved on full (Cartesian) grids. Full grids,
however, become very expensive in a computational sense when used to solve models of higher dimension,
as their size grows exponentially in 3. SGs, in contrast, alleviate this curse and allow for the solution of the
problems with much smaller effort and at the cost of slightly deteriorated errors. We now present SGs in a
compact yet rigorous way, starting from the basic setting common to all SG techniques.

In the following, the domain of interest is restricted to the compact sub-volume Ω = [0, 1]3 . This situation
can be achieved for most other settings by re-scaling and possibly carefully truncating the original domain.
Furthermore, it is assumed that the true 5 can be evaluated at arbitrary points in Ω, and it is expensive to
evaluate, which means that the numerical evaluations of 5 might take much time. Thus, 5 needs to be replaced
by another function D that approximates 5 well but is much cheaper to evaluate:

5 (x) ≈ D (G) =
#∑
8=1

b8 · Φ8 (x) , (2)

with # basis functions Φ8 and coefficients b8 . The Φ8 (x) are basis functions with local or global support, and
the weights b8 are computed from the values 5 (j8) at so-called collocation points {j8}#8=1 ⊂ Ω.

This section proceeds in three steps: First, LSGs based on hierarchical, multi-linear basis functions are pre-
sented. Second, GSGs based on Lagrange characteristic polynomials are introduced. A third part moves beyond
regular grids—which treat different dimensions and regions of the domainwith the same level of importance—by
discussing dimension aswell as spatial adaptivity: adding grid points and thus the computational resourceswhere
they are neededmost for the particular problem at hand. Furthermore, analytical examples to foster basic intuition
are provided. Finally, note that there exist highly performant and easy-to-use open-source implementations of SG
methods in a broad range of programming languages, with some of themost popular ones probably being SG++,5

5see https://sgpp.sparsegrids.org.
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the sparse grids Matlab kit,6 spinterp,7 and TASMANIAN.8 Furthermore, to facilitate the replicability of our
examples, all of those below were generated with TASMANIAN, and that can be found in the following
repository: https://github.com/SparseGridsForDynamicEcon/SparseGrids_in_econ_handbook.

Local Sparse Grids

Following Brumm and Scheidegger [2017], this section introduces LSGs based on multi-linear, hierarchical
basis functions.

One-dimensional functions. The fundamental building blocks of LSGs are 1-dimensional piecewise linear
functions,9

q;,8 (G) =
{

1, ; = 8 = 1,
max(1 − 2;−1 ·

��G − G;,8 �� , 0), 8 = 0, . . . , 2;−1, ; > 1,
(3)

which depend on a refinement level ; ∈ N and index 8 ∈ N. The corresponding grid points are distributed as

G;,8 =

{
0.5, ; = 8 = 1,
8 · 21−; = 8 · ℎ;, 8 = 0, ..., 2;−1, ; > 1.

(4)

Thus, in the 1-dimensional case stated here, we interpolate on an equidistant grid Ω; on Ω = [0, 1] with mesh
width ℎ; = 21−; and grid points G;,8 = 8 · ℎ;, where ; ∈ N, 8 ∈ {0, 1, ..., 2;−1}. For instance, let ; = 3, 8 = 3,
then G;,8 = 3 · 21−3 = 0.75, as shown in panel (a) of figure 2. Next, we want to ensure that the construction
of the approximator (cf. equation (2)) makes it possible to utilize all the previous results when increasing
the refinement level ; to improve the interpolation. By choosing appropriate points for interpolating the 1-
dimensional function, it can be ensured that the sets of points are nested to the extent that the interpolation from
level ; − 1 to ; demands that only the function at the grid points that are unique to the new level ; have to be
evaluated. Formally, such a hierarchical decomposition of the underlying approximation space can be achieved
by introducing hierarchical index sets �;:

�; =


{8 = 1}, if ; = 1,
{0 ≤ 8 ≤ 2, 8 even} if ; = 2,
{0 ≤ 8 ≤ 2;−1, 8 odd} else,

(5)

that lead to so-called hierarchical subspaces,; spanned by the corresponding basis q; = {q;,8 (G), 8 ∈ �;}. Panel
(a) of figure 2 depicts the basis functions up to level 3. The direct sum of the hierarchical increment spaces
results in the function space:

V; =
⊕
:≤;

,: . (6)

Using this hierarchical basis, a given function 5 can then be uniquely approximated by D ∈ V; with coefficients
U:,8 ∈ R, that is,

5 (G) ≈ D (G) =
;∑
:=1

∑
8∈�:

U:,8 · q:,8 (G) . (7)

The coefficients U:,8 in equation (7) are commonly termed hierarchical surpluses. Due to the nested structure
of the hierarchical grid, they can easily be determined: U:,8 simply corrects the interpolant of level : − 1 at the
point G:,8 to the actual value of 5

(
G:,8

)
, as displayed (by arrows) in panel (a) of figure 2.

One of the key observations when looking at panel (a) of figure 2 is that the size of the support (basically
the set where the function is non-zero) of q:,8 is smaller in higher levels: The size of the support is proportional

6see https://sites.google.com/view/sparse-grids-kit.
7see https://people.math.sc.edu/Burkardt/m_src/spinterp/spinterp.html.
8see https://tasmanian.ornl.gov.
9Following for instance Ma and Zabaras [2009], we choose basis functions that can handle non-zero boundaries, as needed in most

economic applications.
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Hierarchical Basis Functions & Construction ofV(
3

0 0.25 0.5 0.75 1
-0.3

-0.2

-0.1

0

0.1
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0.3

0.4

0.5

0.6

2,2

3,1

2,0

1,1
u(x)

f(x) = max[0, exp(0.3-x)]

3,3

(a) Construction of D(G) interpolating 5 (G)
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1.0
Level 1
Level 2
Level 3

(b) SG of level 3

Figure 2 depicts in panel (a) the construction of D(G) (dashed-dotted black line) interpolating 5 (G) = max[0, 1−
exp(0.3−G)] (green line) with hierarchical linear basis functions of levels 1, 2, and 3. The hierarchical surpluses
U;,8 that belong to the respective basis functions are indicated by arrows. They are simply the difference between
the function values at the current and the previous interpolation levels. Panel (b) demonstrates the construction
ofV(

3 (see equation (14)), consisting of all the points contained in the respective hierarchical increment spaces
,(;1,;2) for 1 ≤ ;1, ;2 ≤ = = 3.

to 2−;, that is, it halves in size for each level.

Multi-dimensional functions. The 1-dimensional hierarchical basis from above can be extended to a 3-
dimensional basis on the unit cube Ω = [0, 1]3 by a tensor product construction. Let l = (;1, ..., ;3) ∈ N3
and i = (81, ..., 83) ∈ N3 denote multi-indices representing the grid refinement level and the spatial position
of a 3-dimensional grid point xl,i. Using this notation, we can define the full grid Ωl on Ω with mesh size
(21−;1 , ..., 21−;3 ) and a generic grid point xl,i =

(
G;1,81 , ..., G;3 ,83

)
, where G;C ,8C = 8C · 21−;C , 8C ∈ {0, 1, ..., 2;C−1},

and C ∈ {1, . . . , 3}. For each grid point, xl,i, an associated piecewise 3-linear basis function ql,i (x) is defined
as the product of the 1-dimensional basis functions:

ql,i (x) =
3∏
C=1

q;C ,8C (GC ) , (8)

They span the multivariate subspaces by

,l = span{ql,i : i ∈ �l}, (9)

with the index set �l given by a multidimensional extension to equation (5):

�l =


{i : 8C = 1, 1 ≤ C ≤ 3} if ; = 1,
{i : 0 ≤ 8C ≤ 2, 8C even, 1 ≤ C ≤ 3} if ; = 2,
{i : 0 ≤ 8C ≤ 2;C−1, 8C odd, 1 ≤ C ≤ 3} else.

(10)

The space of piecewise multi-linear functions V= on a Cartesian grid with mesh size ℎ= for a given level = is
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d |V4 | |V(
4 | |V(

5 | |V(
6 |

1 9 9 17 33
2 81 29 65 145
3 729 69 177 441
4 6,561 137 401 1,105
5 59,049 241 801 2,433
10 3.49 · 109 1,581 8,801 41,265
20 1.22 · 1019 11,561 120,401 1,018,129
50 5.15 · 1047 171,901 4,352,001 88,362,321
100 2.66 · 1095 1,353,801 68,074,001 2.74 · 109

Table 1 Number of points for several different grid types. First column: dimension; second column: full grid
of refinement level 4; columns three to five: SG with non-zero boundaries (levels four to six).

then defined by the direct sum of the hierarchical increment spaces (cf. equation (9)):

V= =
⊕
|; |∞≤=

,l, |; |∞ = max
1≤C≤3

;C . (11)

The interpolant of 5 , namely, D(x) ∈ V=, can now uniquely be represented by

5 (x) ≈ D(x) =
∑
|; |∞≤=

∑
i∈�l

Ul,i · ql,i(x). (12)

For a sufficiently smooth function 5 (see Zenger [1991], Bungartz and Griebel [2004], and references therein)
and its interpolant D ∈ V=, the asymptotic error decay amounts to ‖ 5 (x) − D(x)‖!2 ∈ O(2−2=), but at the cost
of O(2=3) grid points, encountering the so-called curse of dimensionality. This is a prohibitive obstacle for the
accurate solution of problems with more than four or five dimensions. For instance, a 10-dimensional problem
with a resolution of 9 points in each dimension (i.e.,V4) needs almost 1010 coefficients, as shown in the second
column of table 1.

Sparse grid construction. To alleviate the curse of dimensionality, approximation spaces need to be
constructed that are better than V= in the sense that a much lower number of grid points leads to similar
accuracy. To this end, one needs to find a way of using tensor products in a special way. The classical SG
construction arises from a cost-benefit analysis in function approximation (see, e.g., Bungartz andGriebel [2004]
for details). For functions with bounded second-order mixed derivatives, it can be shown that the hierarchical
coefficients Ul,i decay rapidly with increasing grid level l, that is,

|Ul,i | = O
(
2−2 |l |1

)
, (13)

where |l|1 = ;1 + . . . + ;3 . The strategy for constructing an SG is to leave out those subspaces within the full grid
space V= that only contribute little to the interpolant. It can be shown that an optimization that minimizes the
approximation error (in the !2- or !∞-norm) given a fixed number of grid points leads to the sparse grid space
of level =, defined by

V(
= =

⊕
|l |1≤=+3−1

,l. (14)

In contrast to the full Cartesian grid, where the maximum of the grid refinement levels across dimensions is
restricted (see equation (11)), now it is the sum of these that is restricted – yet, it is in line with equation (13),
which states that the hierarchical surpluses decaywith growing |l|1. Panel (b) of figure 2 displays the construction
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ofV(
3 in two dimensions. The number of grid points required by the spaceV(

= is given by

|V(
= | = O

(
2= · =3−1

)
, (15)

which is a massive reduction compared to O(2=3) for the full grid spaceV= (see table 1 for concrete examples).
In analogy to equation (12), a function 5 ∈ V(

= ⊂ V= can now be approximated by

5 (x) ≈ D(x) =
∑

|l |1≤=+3−1

∑
i∈�l

Ul,i · ql,i(x). (16)

The asymptotic accuracy of the interpolant deteriorates only slightly from O(2−2=) in the case of the full grid
to O(2−2= · =3−1), as shown, for instance, in Bungartz and Griebel [2004]. This demonstrates why SGs are so
well suited to high-dimensional problems. In contrast to full grids, their size increases only moderately with
dimensions, while they are only slightly less accurate than full grids.

Finally, note that LSGs are not restricted to the multi-linear hat functions presented above. Several other
local basis functions have been proposed in the literature, including piecewise polynomials (see, e.g., Pflüger
[2010], and references therein), wavelets (see, e.g., Gunzburger et al. [2014]), or B-splines (see, e.g., Schober
et al. [2021]). Those alternative basis functions can, in certain situations, provide superior approximation
performance over the ones presented in this section. The following exposition deliberately focuses on linear hat
functions, as they are simple and convenient, in particular when it comes to adaptive refinement procedures.

Global Sparse Grids

We now introduce—following the notation of Ma and Zabaras [2009]—an SG construction that relies on
global basis functions, that is, polynomials which have the whole domain [0, 1] as their support. In economics,
such GSGs are widely used and, as mentioned before, typically referred to as Smolyak SGs (see, e.g., Krueger
and Kubler [2004], Judd et al. [2014]), since their construction relies on the algorithm of Smolyak [1963]. The
latter provides, as above, a way to construct multi-dimensional interpolators based on using tensor products
in a combinatorial way, thus alleviating the curse of dimensionality. In the context of economic applications,
Smolyak SGs turn out to be very useful in situations where a global solution is required, but the model at hand
does not include distinct local features such as kinks. In those situations, global polynomials can provide a
superior approximation performance over piecewise multi-linear basis functions.

One-dimensional functions. The fundamental building blocks for Smolyak SGs are the univariate Lagrange
characteristic polynomials, that is,

L8,; (G) =


1, for ; = 1,
<;∏

:=1,:≠8

G − G:,;
G8,; − G:,;

, for ; > 1 and 8 = 1, . . . , <;,
(17)

where <; is again the number of elements in a set of collocation points. Panel (a) of figure 3 displays the
approximation of a 1-dimensional test function by using a Lagrange polynomial with five uniformly distributed
grid points. It becomes visible that the polynomial approximation with uniform grid spacing slightly suffers
from the so-called Runge’s phoenomenon.10 As in the case of LSGs, it is advantageous to choose the collocation
points in a nested fashion. One popular choice is the Clenshaw-Curtis grid at the non-equidistant extrema of
the Chebyshev polynomials (see, e.g., Xiu and Hesthaven [2005], Nobile et al. [2008]). Thus, for any <; > 1,

10Runge’s phenomenon is the problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with
polynomials of a high degree over a set of equispaced interpolation points.
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Lagrange Polynomials & Smolyak Sparse Grid
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(a) Construction of %� (G) interpolating 5 (G)
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(b) Smolyak SG of level 3

Figure 3 demonstrates in panel (a) the interpolation of 5 (G) = max[0, 1 − exp(0.3 − G)] using Lagrange
polynomials with equi-spaced grid points (denoted %� (G)). Note that Runge’s phenomenon becomes visible for
this latter setting, resulting in undershooting the true solution for G < 0.25. Panel (b) outlines the construction
of a Smolyak SG of level 3, with the incremental contributions of grid points from all lower levels (cf.
equation (21)).

the sets of points j; = {G1,;, · · · , G<; ,;} are characterized by

<; =

{
1, if ; = 1,
2;−1 + 1, if ; > 1,

G8,; =

{
(− cos (c(8 − 1)/(<; − 1)) + 1) /2, for 8 = 1, . . . , <;, if <; > 1,
0.5, for 8 = 1, if <; = 1.

(18)

Consequently, the univariate interpolator is now given by

%; (G) =
<;∑
8=1

H8 · L8,; (G), (19)

where H8 = 5 (G8,;) is the function value at this particular grid point.
Multi-dimensional functions. The 1-dimensional interpolator can be extended to the 3−dimensional case

by forming a full tensor product that reads as

%(x) =
<1∑
81=1
· · ·

<3∑
83=1

5
(
G81,;1 , . . . , G83 ,;3

)
·
(
L81,;1 ⊗ · · · ⊗ L83 ,;3

)
. (20)

where, from now on, again x ∈ R3 .
Sparse grid construction. Equation (20) now serves as a key ingredient for the so-called Smolyak al-

gorithm [Smolyak, 1963]. The latter constructs the sparse interpolant D=,3 using combinatorial products of
1-dimensional functions (cf. equation (19)) as follows (see, e.g., Wasilkowski and Wozniakowski [1995]):

D=,3 (x) =
∑

=−3+16 |l |16=
(−1)=−|l |1 ·

(
3 − 1
= − |l|1

)
·
(
%;1 (·) ⊗ · · · ⊗ %;3 (·)

)
, (21)
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where = > 3, D3−1,3 = 0 holds, the multi-index l = (;1, . . . , ;3) ∈ N3 , and |l|1 = ;1 + . . . + ;3 . As above, ;C
(for 1 ≤ C ≤ 3) is the interpolation level along the C-th dimension. Therefore, the Smolyak algorithm builds the
interpolation function by adding a combination of 1-dimensional functions of order ;C with the constraint that
the sum total ( |l|1 = ;1+ · · ·+ ;3) across all dimensions is between =−3+1 and =.11 Panel (b) of figure 3 displays
a Smolyak SG of level 3. Moreover, note that the number of points contained in a Smolyak SG increases with
levels and dimensions similar to the numbers presented in table 1, that is, at a sub-exponential rate (see also Judd
et al. [2014] for detailed tables).

Finally, notice that both LSGs, as well as GSGs, possess analytical properties that allow for highly efficient
numerical quadrature of functions over the entire function space (see, e.g., Holtz [2010]). Unfortunately, in
economic applications, where integration often does not take place over the same spaces that the policy functions
are interpolated on, SG quadrature cannot be applied directly.

Adaptive Sparse Grids & Analytical Examples

In the two types of SG constructions presented above, the support nodes were pre-determined. Thus, they
treat every dimension and region of the computational domain [0, 1]3 as equally important. However, if the
function 5 that needs to be approximated has different characteristics in the different dimensions or specific
regions of the domain, trying to increase the resolution of the approximator via adaptivity to exploit these
asymmetries might lead to better performance, that is, a smaller approximation error with the same number
of grid points. Conversely, fewer grid points are necessary to achieve the same error. In the following, we
will briefly discuss the basic notion behind the two most important adaptation strategies: dimension-wise and
spatial adaptivity. Furthermore, to foster the basic intuition on how to use adaptivity in practice to approximate
high-dimensional functions efficiently, an analytical example of spatially-adaptive SGs (ASGs) is provided.12

Dimension-adaptive sparse grids. Recall that regular LSGs or GSGs are constructed using a diagonal cut,
as indicated in the left panel of figure 4 (cf. equation (14)), where the dashed red diagonal lines indicate the
corresponding function space which treats all dimensions equally. However, there might be situations where
one dimension might be more important than another. Consider for instance the simple bivariate function
5 (G, H) = cos(20G) · sin(H). The latter oscillates much faster in the first than in the second dimension.
Consequently, it would be important to place more points along the x-axis than the y-axis to deal with this
particularity. To lift this obstacle, dimension-adaptive SGs come to the rescue. Recall that SGs can be built via
the combination technique. The latter composes an SG as a combination of full grids and applies both to SG
formulations with local and global basis functions. By slightly adjusting the Smolyak algorithm (cf. equation
(21)), formulas can be derived where the resulting SG is indeed anisotropic, that is, some dimensions obtain
a higher resolution of points than others. For more details, see, for example, Hegland [2003], Gerstner and
Griebel [2003], and references therein for the general case of dimensionally-adaptive SGs, and Judd et al. [2014]
for their application to economics.

Spatially-adaptive sparse grids. Dimensional adaptivity is useful, but sometimes it cannot provide satisfac-
tory performance in the case of highly non-linear functions that need to be approximated. Imagine for instance
a multi-variate test function 53 : [0, 1]3 → R that reads

53 (x) = max(0, 1 − 4 1
2−(

∏3
C=1 (GC+

1
5 ))

1
3 ). (22)

As visible in the leftmost panel of figure 5 for the 2-dimensional case, this function has flat regions, low-curvature
regions, high-curvature regions, and even a kink.

11Notice that the classical SG can also be written in terms of the Smolyak algorithm stated here (see, e.g., Griebel et al. [1992], Ma
and Zabaras [2009], Obersteiner and Bungartz [2021], which is sometimes also termed as the combination technique. Furthermore, it is
important to mention that there are sometimes significant computational gains when constructing an SG expressed in terms of full grid
contributions instead of hierarchical contributions on the incremental grids. This means that existing algorithms that work on full grids
(such as highly tuned solvers for partial differential equations) may be reused to compute SGs. The different and independent full grids
can be processed independently (or even in parallel), and after the computation has finished, the full grid solutions can be combined
according to the combinatorial formula.

12The performance of dimension-adaptive GSGs was extensively discussed in the previous literature, including a provision for
example codes (see, e.g., Judd et al. [2014]).
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Construction of an (Adaptive) Sparse Grid

  

Figure 4 displays hierarchical increment spaces ,(;1,;2) for 1 ≤ ;1, ;2 ≤ = = 3 with their corresponding grid
points and one-dimensional piecewise linear basis functions of levels 1, 2, and 3 (left hand side). The regular
SGV(

3 (see equation (14)) in the top right corner consists of all the points displayed in the left figure. An ASG
V�(�

3 , as shown in the bottom right corner, does not. The red dots in the left panel symbolically represent
points that are refined, that is, 6(Ul,i) ≥ n holds, whereas the green ones indicate points where the grid is not
refined. The black points in the left panel are only contained inV(

3 , and notV�(�
3 .

Regular or dimensionally adaptive SGswould have as many grid points in those regions where the function is
(almost) flat as in the other regions. As the corresponding hierarchical surpluses would almost vanish, this would
be a waste of grid points and computational resources. It would make more sense to place these points near the
kink or in high-curvature regions. Spatial adaptivity within LSGs makes this possible. Instead of adding entire
incremental grids for an increasing grid level, spatially-adaptive grids only choose to add a subset of the points of
the incremental grids to avoid wasting points. Recall that the regular LSG introduced in equation (14) is based on
an a priori selection of grid points that are optimal for functions with bounded second-order mixed derivatives.
An adaptive (a posteriori) refinement does, in addition, use local error estimators to select which grid points in
the SG structure should be refined. The most common way to do this is to add 23 children in the hierarchical
structure with increasing grid refinement level if the hierarchical surpluses satisfy 6(Ul,i) ≥ n for a so-called
refinement threshold n ≥ 0. The basic intuition behind this procedure is the following: when approximating a
function as a sum of piecewise linear basis functions, the main contributions to the interpolant most likely stem
from comparatively few terms with big surpluses (see the left panel of figure 2 and equation (13)). Therefore,
the logic of the refinement strategy presented here is to monitor the size of the hierarchical surpluses and refine
the grid where those terms are larger than some threshold. Technically, the ASG refinement can be built on
top of the hierarchical grid structure, as illustrated in the right panel of figure 4. The lower right panel of
figure 4 illustrates a qualitative example of how a 2-dimensional SG is refined adaptively, adding a second layer
of sparsity to the SG. For more details regarding spatially-adaptive SGs, see, for example, to Bungartz and
Dirnstorfer [2003], Ma and Zabaras [2009], Pflüger [2010].

Numerical example. Given this basic intuition on the workings of spatial adaptivity, we next apply it to
the example of approximating a 2-dimensional (non-smooth) analytical function 5 : [0, 1]2 → R, as specified
in equation (22) with LSGs, and using TASMANIAN. In particular, we generate SG as well as adaptive SG
approximations to the function 5 and measure their accuracy as follows: # = 10,000 test points are randomly
generated from a uniform distribution on [0, 1]2; then the maximum error and the !1 error over this set of points
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(Adaptive) Sparse Grids of Increasing Refinement Levels
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(a) Level 5 SG vs. level 16 ASG
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(b) Comparison of the interpolation error

Figure 5 shows in panel (a) a comparison of a level 5 SG with a level 16 ASG and a refinement threshold
n = 10−3; panel (b) depicts a comparison of the interpolation error for an ordinary SG and ASG interpolation at
different refinement levels, ranging from from level 6 to 16; The ASGs were obtained by applying a threshold
n = 10−6.

is computed, which are, respectively, given by

!∞ = max
8=1,...,#

| 5 (x8) − D (x8) | , !1 =
1
#

∑
8=1,...,#

| 5 (x8) − D (x8) |. (23)

The refinement criterion applied here for the ASG is given by

6(Ul,i) =
|Ul,i |
5<0G

> n, (24)

where 5<0G = max | 5 (x) | is the maximum of the function values used so far in the ASG construction up to the
current grid level. In the case of vector-valued functions, grid points are added isotropically, i.e., if any of the
outputs has normalized hierarchical surpluses larger than n . For more details as well as alternative refinement
criteria used in the literature, see, e.g., Stoyanov [2015].

Panels (a) and (b) of figure 5 display both an SG as well as an ASG interpolation of our test function 5 ,
where the non-adaptive SG is of level 5, and the ASG is refined up to level 16, given a refinement threshold of
n = 0.001. This figure illustrates nicely that the ASG algorithm automatically detects the non-differentiability
in 5 . Panel (c) of figure 5 displays the convergence behavior of the two methods for approximating 5 . The data
points reported for the regular SGwere obtained by computing the !∞ and !1 errors at levels 6 through 16. These
results are in contrast with the data points obtained from ASGs starting from level 3 and gradually increasing
the maximum refinement level from 6 to 16 with n = 10−6. Strikingly, to reach an !1 error of around 10−5 the
ASG needs 12,836 points as opposed to 69,633 points when using the conventional SG. This example illustrates
that ASGs are not only able to capture strong non-linearities but also non-differentiabilities that SGs (which are
constructed to approximate functions with bounded second-order mixed derivatives) are, in general, not able
to capture. The next two sections show that this is still true when applied to economic applications. For more
details, see https://github.com/SparseGridsForDynamicEcon/SparseGrids_in_econ_handbook.

Solving Discrete Time Dynamic Stochastic Models with Sparse Grids

SG approximation techniques need to be integrated into the recursive methods that are typically employed
to solve discrete-time dynamic economic models. Krueger and Kubler [2004] were the first to do so, applying
GSGs in a time iteration algorithm to solve stochastic OLG models of medium size, whereas Judd et al. [2014]
employ (anisotropic) GSGs in a fixed-point iteration algorithm to solve single- andmulti-country growthmodels.
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This section shows how to embed sparse grids in a time iteration algorithm. In particular, it follows Brumm
and Scheidegger [2017] in showing how to use adaptive LSGs to solve an IRBC model with constraints that
occasionally bind, namely irreversible investment. Finally, it discusses the use of SGs in the context of value
function iteration algorithms.

Time Iteration With Sparse Grids

The so-called time iteration algorithm, introduced by Coleman [1990], solves for a recursive equilibrium
of a dynamic economic model by guessing a policy function and iteratively updating it using the first-order
equilibrium conditions of the model. Let x ∈ - ⊂ R3 denote the state of the economy at a given point in time
and let ? : - → . ⊂ R<, < ∈ N, denote the policy function. The stochastic transition of the economy to the
next period can then be represented by the distribution of next period’s state x′, which depends on the current
state and policy:

x′ ∼ � (·|x, ?(x)) . (25)

While the distribution � given x and ?(x) follows from the assumptions of the model, the policy function ?
needs to be determined from equilibrium conditions. When using time iteration, these conditions include the
agents’ first-order optimality conditions, budget constraints, and market clearing conditions. Taken together,
these conditions constitute a functional equation that the policy function ? has to satisfy, namely, that for all
x ∈ - ,

0 = E
{
�

(
x, x′, ? (x) , ? (x′)

)
|x, ?(x)

}
, (26)

where the expectation, represented by the operator E, is taken with respect to the distribution � (·|x, ?(x)) of
next period’s state x′. The function � : -2 × .2 → R< represents the period-to-period equilibrium conditions
of the model. Below, an IRBC model’s equilibrium conditions are presented as a concrete example for this
abstract characterization of a recursive equilibrium. For now, we stick with the abstract characterization to
describe most clearly how to solve for time-invariant equilibrium policy functions using an ASG-time-iteration
algorithm. The basic idea of time iteration is as follows: Solve the equilibrium conditions of the model for
today’s policy ? : - → . taking as given an initial guess for the function that represents the next period’s
policy, ?=4GC ; then, use ? to update the guess for ?=4GC and iterate the procedure until convergence. Thus, time
iteration creates many successive approximations of ?. ASGs are employed in each iteration step to do so. The
structure of the resulting ASG-time-iteration algorithm is displayed in algorithm 1. Before turning to a concrete
example, comments on several crucial aspects of this algorithm are in place:

• Maximal refinement level, !<0G: Note first that the classical SG of level ! is obtained as a special case by
setting !<0G = !0 = !, so that all the grid points within a given level are added to the LSG. Note also that
one could, in principle, set the maximum refinement level !<0G to a very large value that is never reached
for a given refinement threshold. However, this might imply, in the case of a function with high curvature
or non-differentiabilities, that the algorithm may not stop to refine until a very high interpolation level.

• Conditional expectation, E {·|·}: The evaluation of the conditional expectation in the main step of the
algorithm does, of course, depend on the specification of the exogenous shock process. If the exogenous
states are assumed to be continuous, as was (implicitly) the case above, the standard approach is to choose
a quadrature rule that transforms the integral into a sum over an appropriate set of quadrature points and
respective weights. If the exogenous process is discrete with realizations I ∈ / , then one can write the
state as G̃ ∈ -̃ = / × - and let the algorithm create a separate ASG, �I , over - for each I ∈ / , as in
Brumm et al. [2017].

• Missing solutions: In the main step of the algorithm, a policy vector is assigned to a given grid point by
solving the equilibrium conditions. If the numerical solver does not find a solution, a fallback value needs
to be provided to the SG algorithm in order to proceed. Potential fallback values are the function value
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Input: Initial guess ?=4GC for next period’s policy function. Approximation accuracy [̄. Maximal
refinement level !<0G . Starting refinement level !0 ≤ !<0G . Refinement threshold n .

Output: The (approximate) equilibrium policy function ?.
while [ > [̄ do

Set ; = 1, set � ⊂ - to be the level 1 grid on - , and set �>;3 = ∅, �=4F = ∅.
while � ≠ �>;3 do

for 6 ∈ � \ �>;3 do
Given ?=4GC , compute ?(6) by solving

0 = E
{
�

(
6, x′, ? (6) , ?=4GC (x′)

)
|6, ?(6)

}
, x′ ∼ � (·|6, ?(6)) .

Define the policy ?̃(6) by interpolating {?(6)}6∈�>;3
.

if (; < !<0G and ‖?(6) − ?̃(6)‖∞ > n) or ; < !0, then
Add the next-level neighboring points of 6 to �=4F .

end
end
Set �>;3 = �, set � = �>;3 ∪ �=4F , set �=4F = ∅, and set ; = ; + 1.

end
Define ? as the SG interpolation of {?(6)}6∈� .
Calculate (approximate) error: [ = ‖? − ?=4GC ‖∞. Set ?=4GC = ?.

end
Algorithm 1: Overview of the ASG-time-iteration algorithm.

at the same grid point in the previous iteration or an interpolated value based on neighboring points from
the current iteration.

Example: IRBC with Occasionally Binding Constraints

To demonstrate the capabilities of ASGs, consider an IRBC model where investment in each country’s
capital stock is irreversible as in Brumm and Scheidegger [2017]. As these occasionally binding constraints
induce non-differentiabilities in policy functions, they represent a challenge that adaptivity can address. To
focus on the dimensionality of the state space and the occasionally binding constraints, the model is kept simple
in many other ways.

IRBC model. In the model, there are " countries, 9 = 1, . . . , " , each using its capital stock, : 9 , to produce
output, which can be used for investment, j 9 , or for consumption, 2 9 , generating utility through an additive
separable utility function with discount factor V and per-period utility function

D 9 (2 9) = 2
1−W 9
9
/(1 − W 9), W 9 > 0. (27)

Investment is subject to adjustment costs equal to : 9 · q/2 · 62
9 , where 6 9 ≡ : ′9/: 9 − 1 and q > 0. Furthermore,

investment is irreversible, j 9 ≥ 0, and depreciates at a rate X > 0, thus following the law of motion:

: ′9 = : 9 · (1 − X) + j 9 . (28)

The amount produced by each country is given by 0 9 · � · (: 9)^ , where � > 0, and 0 9 is the country specific
productivity level. The latter follows this law of motion:

ln 0′9 = d · ln 0 9 + f ·
(
4 9 + 4"+1

)
. (29)

The parameters d and f determine the persistence and volatility in productivity. The country-specific shocks,

Electronic copy available at: https://ssrn.com/abstract=3979412



15

4 9 ∼ N(0, 1), as well as the global shock, 4"+1 ∼ N(0, 1), are assumed to be independent from each other
and across time. We follow the comparison study by Kollmann et al. [2011] in assuming complete markets,13
which implies that the decentralized competitive equilibrium allocation can be obtained as the solution to a
social planner’s problem: Subject to aggregate resource constraints and irreversibility constraints, maximize
the weighted sum of country utility, weighted by welfare weights, g9 , which depend on the initial capital stocks
of the countries.

Recursive structure. In the following, the recursive structure of the model is briefly presented, while the
reader is referred to Brumm and Scheidegger [2017] for the derivation of the equilibrium conditions. The state
variables of the IRBC model with M countries consist of

x = (01, . . . , 0" , :1, . . . , :" ) ∈ - ⊂ R2" , (30)

where 0 9 and : 9 are the productivity and capital stock of country 9 , respectively. The policy function ? : R2" →
R2"+1 maps the current state into investment choices, j 9 , the multipliers for the irreversibility constraints, ` 9 ,
and the multiplier of the aggregate resource constraint, _:

?(x) = (j1, . . . , j" , `1, . . . , `" , _) . (31)

The investment choices determine the next period’s capital stock in a deterministic way through (28). In contrast,
the law of motion of productivity (cf. equation (29)) is stochastic. Taken together, (28) and (29) specify the
distribution of G ′ (corresponding to (25) in the general problem above). The period-to-period equilibrium
conditions of this model (corresponding to (26)) consist of three types of equations. First, the optimality
conditions for investment in capital in each country 9 :

_ ·
[
1 + q · 6 9

]
− ` 9 − V · EC

{
_′

[
0′9 · � · ^ · (: ′9)^−1 + 1 − X + q

2
· 6′9 ·

(
6′9 + 2

)]
− `′9 · (1 − X)

}
= 0. (32)

Second, the irreversibility constraint and the associated complementary condition for each country 9 ,

j 9 ≥ 0, ` 9 ≥ 0, j 9 · ` 9 = 0. (33)

Finally, using 2 9 = (_/g9)−W 9 , the aggregate resource constraint is

"∑
9=1

(
0 9 · � · (: 9)^ − : 9 ·

q

2
· (6 9)2 − j 9 − 2 9

)
= 0. (34)

Time iteration solution. Given the above characterization of a recursive equilibrium, two important choices
need to be made before algorithm 1 can be directly applied. First, the conditions in (33) include inequality
constraints. To handle these, we either need to transform them into equations (as in Brumm and Grill [2014]),
to include them as inequality constraints and use an appropriate solver, or to use a solver that directly handles
complementarity conditions. Second, the expectation term in equation (32) has to be evaluated by integrating
over the (normally distributed) productivity shocks. A careful selection of the quadrature rule is of key
importance to the overall performance of algorithm 1, as the solution of the individual nonlinear sets of
equations within the time iteration algorithm can take up more than 90% of the entire runtime [Scheidegger
et al., 2018]. Thus, if a solution of moderate quality is sufficient, a simple and fast quadrature rule like a
monomial rule that grows linearly in the number of shocks can be employed. In contrast, if the expectation
needs to be computed to a high degree of precision, for example, a Gauss-Hermite quadrature rule can be
employed. The latter, however, grows exponentially in dimension and thus will dominate the overall runtime
in a high-dimensional model, despite the fact that SGs in a standalone mode would alleviate the curse of
dimensionality.14 For a thorough discussion of quadrature procedures, see, for example, Judd [1998].

13However, as the described algorithm does not directly solve the social planner problem, but iterates on the period-to-period
equilibrium conditions given by (32)–(34), an incomplete markets version of this model could be solved in a similar way.

14Judd et al. [2017] recently devised a method to pre-compute integrals in a broad range of dynamic models so that this step in the
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Euler Equation Errors as a Function of Grid Points

10 2 10 3 10 4

Points

-3.5

-3.4

-3.3

-3.2

-3.1

-3

-2.9

-2.8

-2.7

L
1
 e

rr
or

s

SG
ASG

(a) !1 errors
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(b) !∞ errors

Figure 6 depicts in panels (a) and (b) a comparison of the average and maximum Euler errors in a 4-
dimensional—that is, a 2-country IRBC model with irreversible investment, and that was solved via the time
iteration algorithm. In the case of the ASGs, we started with a fixed SG of level 3 and then successively in-
creased the maximum refinement level from 4 to 9, with n = 10−3. The results are compared with corresponding
ordinary SGs of level 4 up to level 9. Notice that ASGs need substantially fewer points compared to SGs for a
given level of accuracy.

Figure 6 reports numerical results for running LSG-time-iteration algorithms to solve the 2-country (i.e.,
four-dimensional) version of the above IRBCmodel. The employed parameters of the model and the Euler error
measure are chosen as in Brumm and Scheidegger [2017]. Similar to the analytic example in figure 5, ASGs
substantially outperform SGs. In addition to this fundamental result, Brumm and Scheidegger [2017] provide
the following three additional findings: First, the comparative advantage of ASGs over SGs becomes even more
critical as the dimensionality of the problem increases. Second, even for smooth models, in particular when they
are of very high dimension, ASGs are much more flexible than SGs when it comes to choosing the right balance
between running time and accuracy. Third, while the compute time for SGs and ASGs increases substantially
with the increasing dimensionality of the model, this burden can, to some extent, be alleviated by leveraging
the high level of parallelism inherent to SG techniques in combination with contemporary high-performance
computing systems, as will be discussed in more detail in the conclusion.

Value Function Iteration With Sparse Grids

Many dynamic problems in economics and finance can be formulated recursively by the Bellman equa-
tion [Bellman, 1961], and solved by value function iteration. Restricting the exposition to the infinite-horizon
case without time-dependence of fundamentals, the Bellman equation reads as

+ (x) = Γ(+ ′(x)) = max
?∈D(x)

[D(x, ?) + V · E{+ ′(x′ |x, ?)}] , with x′ ∼ � (x, ?). (35)

Γ(·) is the Bellman operator that maps next period’s value function + ′ into this period’s value function + .
x ∈ R3 is the vector of (continuous) state variables, and ? is the policy, which is constrained by ? ∈ D(x).
Furthermore, next period’s state x′ is distributed according to � (x, ?), D(·) is the per-period payoff function,
and V ∈ (0, 1) and E(·) are the discount factor and the conditional expectation, respectively.

time iteration algorithm can be accelerated substantially.
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Under assumptions that make the Bellman operator a contraction, that is, ‖Γ(+) −Γ(,)‖∞ ≤ V · ‖+ −, ‖∞,
value function iteration—iterating on the value function by applying the Bellman operator—converges to the
unique value function representing a recursive equilibrium, as two consecutive value functions will eventually
satisfy ‖+ ′−+ ‖∞ ≤ n for any n > 0 (see, e.g., Stokey et al. [1989], Rust [1996]). There are, however, two caveats
when it comes to using SGs to solve high-dimensional problems with value function iteration. First, while value
function iteration is, in many contexts, a robust and reliable convergence procedure, it is often much slower than
alternative methods, which is of particular relevance when it comes to high-dimensional problems. Second, in
theory, the convergence of value function iteration pre-supposes shape-preserving interpolation—in particular,
that today’s value function is concave if the next period’s value function is also concave. Unfortunately, SG
methods are generally not concavity-preserving, which may result in convergence problems in practice.

The numerical implementation of value function iteration with ASGs is quite similar to the time iteration
algorithm.15 Looking at algorithm 1, only three aspects need to be adjusted. First, value functions instead
of policy functions are approximated. In both cases, however, the fact that high-quality approximations need
to be repeatedly constructed (i.e., for + on the LHS of (35)) and evaluated (i.e., + ′ on the RHS of (35))
necessitates an efficient approximation method like SGs. Second, the value function that has to be repeatedly
approximated over the high-dimensional space is only scalar-valued in contrast to the vector-valued policy in
time iteration. Note, however, that after convergence, even for value function iteration, the implied policy needs
to be stored and then approximated on the SG such that the model can be simulated. Third, instead of a system
of equations, a constrained optimization problem needs to be solved at each point in the SG. In doing so, using
non-differentiable LSGs to approximate the value function may be problematic, as these methods do not lend
themselves for gradient-based optimization and automatic differentiation. This problem can be overcome by
the hierarchical B-spline approach outlined in Schober et al. [2021], which combines piecewise polynomial
interpolation with the flexibility of multi-linear basis functions and thus generates smooth approximations of
the value function. However, a drawback of this approach is that the determination of the coefficients of the
B-Spline interpolant is computationally relatively expensive.

Solving Continuous-Time Dynamic Stochastic Models with Sparse Grids

This section demonstrates how LSGs can be used to solve multivariate continuous-time dynamic models, a
setting that is at the heart of many economic applications. Dynamic stochastic models are usually recursively
formulated in continuous time as HJB partial differential equations (PDEs). We begin our discussion by briefly
outlining a generalized finite-difference scheme to solve PDEs on LSGs. Next, the applicability of this method is
demonstrated by solving a variant of the standard incomplete markets Aiyagari [1994] model with a non-convex
capital income tax.

A Consistent Finite-Difference Scheme for HJB Equations on Sparse Grids

We consider a continuous-time dynamic stochastic optimization problem of an agent whose state is given
by x = (G1, . . . , G3) ∈ - ⊂ R3 . The agent’s state is assumed to follow a controlled Itô process, that is,

3x = `(?, x)3g + f(?, x)3�, (36)

where ` : . × R3 → R3 , f : . × R3 → R3×: , and � is :-dimensional Brownian motion. We use g and
3g to denote time since C indexes dimensions of the state space in our notation. Mirroring the notation from
before, we denote by ? ∈ . ⊂ R< the vector of choice variables under the agent’s control which may lie in the
admissible set . . The agent’s problem is to choose ? to maximize the expected discounted sum of future payoff
flows, which we denote by D(?). The stationary value function + : - → R associated with the agent’s control

15For more details on value function iteration with ASGs, see Scheidegger and Treccani [2018], and references therein.
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problem is a solution to the HJB equation:16

d+ (x) = max
?∈.

{
D(?) +

3∑
C=1

`C (?, x)+GC (x) +
1
2

3∑
C ,B=1

fCB (?, x)+GC GB (x)
}
, (37)

where d is the agent’s discount rate, `C is the C-th element of the vector `, and, abusing notation slightly, fCB is
the (C, B)-entry of the matrix ff) .17 As above, we use 1 ≤ C, B ≤ 3 to index the dimensions. Furthermore, we
apply the shorthand notation +GC to denote the partial derivative m/mGC+ (G), and analogously for +GC GB .

After the formal introduction of LSGs by Zenger [1991], they were quickly recognized as a powerful
tool for solving PDEs. Subsequent work initially applied LSGs in the context of (Galerkin) finite-element
methods. Schiekofer [1998] then extended the application of LSGs to the class of finite-difference methods,
formally showed that the use of regular finite-difference stencils on LSGs leads to inconsistent discretization
schemes, and proved the consistency of a generalized sparse finite-difference scheme for a particular class of
LSGs.18 In more recent work, Garcke and Ruttscheidt [2019] propose an alternative approach to construct
consistent finite-difference schemes on LSGs using ghost node interpolation. In what follows, we provide a
very brief overview of the finite-difference method developed in Schaab and Zhang [2022] to solve PDEs such
as equation (37) on an LSG � over the compact region - .19

Consider a function D(G) of one variable. Its derivative D′(G) can be numerically approximated by ℎ−1 [D(G+
ℎ) − D(G)] for small ℎ. On a full grid, we can represent the numerical approximation to the derivative at a point
G8 as �+G ◦ D(G8) = ℎ−1 [D(G8 + ℎ) − D(G8)], where ℎ = G8+1 − G8 is the grid’s mesh size.20 This finite-difference
approximation can be written in terms of the shorthand stencil notation ℎ−1 [0 − 1 1], where the entries in
brackets refer to the grid points [G8−1, G8 , G8+1]. On full grids, both the forward stencil �+G = ℎ−1 [0 − 1 1]
and the backward stencil �−G = ℎ−1 [−1 1 0] represent consistent discretizations of the first-order derivative
D′(G). Similarly, the second-order finite-difference matrix �GG defined via the stencil ℎ−2

C [1 − 2 1] represents
a consistent discretization of D′′(G) on a full grid.

Defining a consistent discretization scheme for partial derivatives on LSGs is not trivial. In particular,
the standard finite-difference approximations introduced above for the first- and second-order derivatives are
generally no longer consistent on LSGs (see, e.g., Schiekofer [1998] and Schaab and Zhang [2022]). That is,
we can no longer use the regular finite-difference matrices to solve equation (37) on LSGs numerically.

To develop a consistent finite-difference scheme, we build on our discussion from above and introduce a set
of operators which map the function space into the hierarchical increment space (cf. equation (11)). We define
the 1-dimensional hierarchization operator as

�G;C ,8C ,ℎC : V;C →
⊕
9C ≤;C

, 9C (38)

via the stencil [−1/2 1 − 1/2], applied at a point G;C ,8C and with mesh size ℎC . That is, for D : R → R, we
have

�G;C ,8C ,ℎC ◦ D(G;C ,8C ) = D(G;C ,8C ) −
D(G;C ,8C − ℎC ) + D(G;C ,8C + ℎC )

2
, (39)

where 1 ≤ 8C ≤ 2;C − 1. For the multivariate case, D : R3 → R, the following holds:

�G;C ,8C ,ℎC ◦ D(xl,i) = D(xl,i) −
D(G;1,81 , . . . , G;C ,88 − ℎC , . . . , G;3 ,83 ) + D(G;1,81 , . . . , G;C ,88 + ℎC , . . . , G;3 ,83 )

2
. (40)

16For the formal derivation of equation (37), see, for example, Oksendal [1992].
17A formal definition of the HJB equation (37) also requires the determination of the boundary conditions along the boundary of - .

For a formal treatment of boundary conditions in the context of SGs, see Schaab and Zhang [2022].
18In the context of PDEs, a discretization scheme is called consistent when its local truncation error tends towards 0 as the grid’s

resolution tends towards 0. Intuitively, consistency implies that the approximation error in the partial derivative operators converges to
0 as the grid becomes finer [LeVeque, 2007].

19The formal results on consistency summarized in this subsection apply to regular LSGs. We confirm numerically in the following
subsection that consistency and convergence are also satisfied on ASGs in the context of our application. Schaab and Zhang [2022]
perform numerical convergence analysis on ASGs across a broad range of applications.

20For a textbook treatment, see, e.g., LeVeque [2007].
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Finite-Difference Stencils

(a) Dense grid: consistent (b) Sparse grid: inconsistent (c) Sparse grid: consistent

Figure 7 shows consistent and inconsistent finite-difference stencils. Figures (a) through (c) display the grid
points that a regular and sparse finite-difference forward stencil load on in case of a full grid, (a), and a regular
LSG, (b) and (c). The stencil is applied at the grid point colored red. The regular stencil [0 −1 1] searches for
the direct right neighbor. In the case of a dense grid in Panel (a), the red node has an immediate right-neighbor
and the regular stencil consequently leads to a consistent discretization. In the case of a LSG in Panel (b), the
red node does not have an immediate right-neighbor. The regular stencil therefore loads on a point that is far
away. This results in an inconsistent scheme. Panel (c) displays a consistent sparse forward stencil which loads
on all the nodes surrounding the grid point colored red and its right-neighbor. These points contain valuable
information about variation in the underlying function.

Furthermore, we define the 3-dimensional hierarchization operator as

Hxl,i,h =
∏
C≤3

�G;C ,8C ,ℎC . (41)

For proofs and a more detailed discussion, see, for example, Bungartz and Griebel [2004], and references
therein.

The hierarchization operator introduced above applies at a given grid point, xl,i. It is convenient to
define a composite operator that performs one-dimensional hierarchization at every grid point. LetH C denote
the operator that performs hierarchization in dimension C, �G;C ,8C ,ℎC ◦ D(xl,i), at all grid points of a given
grid. Similarly, let HC denote the operator that performs hierarchization in all dimensions but C, and H the
operator that performs hierarchization in all dimensions. We also introduce the inverse operators that map
from hierarchical to nodal coefficients and are given by EC = (H C )−1 and EC = H−1

C . We refer to these as
de-hierarchization operators.

With these basis transformation operators in hand, we can now define a set of generalized sparse finite-
difference operators. In particular, in a given dimension C, let �±,SC = EC ◦ �±C ◦HC and �S

CC = EC ◦ �CC ◦HC ,
where �±C and �CC are the standard finite-difference matrices. We illustrate these finite-difference matrices in
figure 7. Formally, then, applying �±,SC and �S

CC to the function + (G) (cf. equation (37)) yields a consistent
discretization of the first- and second-order partial derivatives +GC and +GC GC on a regular LSG �, as long as +
has bounded mixed derivatives. A proof along these lines was originally developed in Schiekofer [1998] and
subsequently extended by Schaab and Zhang [2022].21

The algorithm to solve dynamic programming problems in continuous time using ASGs is summarized in
algorithm 2 below. See Schaab and Zhang [2022] for additional details.

Stability, monotonicity, and convergence. The consistency of a discretization scheme does not yet imply
convergence to the true solution. In the classical analysis of smooth partial differential equations, convergence

21The consistency proofs of Schiekofer [1998] not only assume smoothness conditions on+ , but also require that� is a regular LSG,
as defined, for example, in Bungartz and Griebel [2004]. Schaab and Zhang [2022] develop a formal consistency result in the context
of ASGs.
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Input: Initial guess +0 for the value function. Approximation accuracy [̄. Refinement thresholds for
grid adaptation. Starting grid level l0.

Output: The (approximate) equilibrium value function + and the associated ASG �.

Given index l0, construct the associated grid �0, hierarchization matrixH0, and the sparse
finite-difference matrices �±,S,0C and �S,0

CB ∀C, B, on grid �0.

for : ≥ 0 do

while [ > [̄ do

Compute policy functions ?: using guess + : and first-order conditions.
Solve HJB for + :,=4F .
Set [ = | |+ :,=4F −+ : | | and + : = + :,=4F .

end
Compute hierarchical surplus α: =H : ◦+ : .
If adaptation criterion met, adapt grid �:+1; else stop, and set + = + : and � = �: .
ReconstructH :+1 and sparse FD matrices, �±,S,:+1C and �S,:+1

CB ∀C, B, on grid �:+1.
end

Algorithm 2: Overview of the ASG value function iteration algorithm.

typically requires at least stability in addition to consistency.22 In the context of viscosity solutions, on the
other hand, the seminal contribution of Barles and Souganidis [1991] establishes that convergence typically
requires both stability and an appropriate notion of monotonicity. General results on the convergence of
sparse finite-difference schemes in the context of viscosity solutions have remained elusive in part because SG
interpolation does not generically satisfy monotonicity.23 The numerical convergence analysis performed below
suggests, however, that concerns about non-monotonicity and non-convergence do not apply in the context of
our application. Indeed, Schaab and Zhang [2022] perform numerical convergence analysis along these lines for
a wide range of SG applications in continuous time. The convergence properties of SG discretization schemes
remain an active area of research.

Example: Aiyagari Model with Non-Convex Capital Income Tax

In this section, we present a variant of the standard incomplete markets model along the lines of Aiyagari
[1994] to showcase how ASGs can be used in the context of HJB equations. In this model, the economy is
populated by a continuum of households with measure one. Household preferences over consumption are given
by

E0

∫ ∞

0
4−dgD(2g)3g, (42)

where 2g denotes the rate of consumption, and d is the discount rate. Households face the budget constraint

¤:g =
(
1 − ) (:g)

)
A:g + 4Ig − 2g , (43)

22Intuitively, stability implies that truncation or local approximation errors do not propagate too quickly. A formal treatment of these
topics in the context of LSGs is beyond the scope of this paper. For additional details, see, for example, the Lax-Richtmyer (Equivalence)
Theorem and LeVeque [2007] for a textbook treatment.

23 Hemker [2000] points out that interpolation on LSGs may not satisfy monotonicity. Garcke and Ruttscheidt [2019] show that even
in the case of concave, monotonically increasing functions, interpolation on LSGs is not generically guaranteed to be monotone. In
particular, they show that when the hierarchical representation of a concave and monotonically increasing function leads to negative
hierarchical coefficients, the resulting SG interpolation may be non-monotone. Garcke and Ruttscheidt [2019] propose adaptive grid
refinement in areas of the state spacewhere non-monotonicities arise. This can be achieved by either checking the hierarchical coefficients
for positivity or by verifying that the numerically approximated derivatives satisfy the concavity and monotonicity conditions of the
underlying value function.
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where :g is the household’s stock of owned capital and Ig captures idiosyncratic earnings risk. Households
take as given a constant real interest rate A . Capital cannot be sold short, :g ≥ 0.

The households pay a constant tax rate on their financial income once their wealth exceeds a certain level
:∗. Concretely, we set

) (:) =
{

0 if : < :∗

^ if : ≥ :∗.

Finally, we assume that Ig follows a diffusion process, with

3Ig = −\Ig3g + f3�, (44)

where 3� is a standard Brownian motion.
Recursive formulation. The households face the dynamic stochastic optimization problem of choosing

{2g}g≥0 to maximize (42) subject to (43) and (44), as well as the short-sale constraint on capital. It will
be convenient to work directly with the recursive formulation of this problem over a compact region - =

{(:, I) | : ∈ [0, :̄] and I ∈ [I, Ī]} ⊂ R2, which we refer to as the state space of the household problem.24 The
state variables of the household problem are therefore x = (:, I) ∈ - and the consumption policy function is
?(x) = 2(:, I).

Formally, the value function that maximizes the household problem solves a PDE of HJB form, which is
given by

d+ (:, I) = max
2̂

{
D(2̂) +

(
(1 − ) (:))A: + 4I − 2̂

)
+: (:, I) − \I+I (:, I) +

f2

2
+II (:, I)

}
, (45)

where we use the shorthand +: = m/m: + and so on to denote partial derivatives. The consumption policy
function then solves the first-order condition D′(2(:, I)) = +: (:, I). Plugging in for the first-order condition,
we can rewrite equation (45) to obtain

d+ (:, I) = D
(
2(:, I)

)
+

(
(1 − ) (:))A: + 4I − 2(:, I)

)
+: (:, I) − \I+I (:, I) +

f2

2
+II (:, I). (46)

Formally, equation (46) holds everywhere in the interior of the state space.25 To pin down the value function
over the entire compact space - requires a set of boundary conditions. In particular, the short-sale constraint
on capital gives rise to a state-constrained boundary condition that takes the form D′(2(:, I)) ≥ +: (:, I).26

Calibration. Adopting CRRA utility, with D(2) = (1 − W)−121−W , we set the discount rate of households to
d = 0.02 and the coefficient of relative risk aversion to W = 2. We calibrate the earnings process using \ = 0.10
and f = 0.04. The real interest rate A is the only price that households face. We set it to 1.93% in the baseline
model without tax and to 1.94% with the capital income tax.27 Finally, we set ^ = 0.02 and :∗ = 40.

Performance and accuracy. Our main numerical exercise in this section is to compare the accuracy of
solutions for + (:, I) across different grids that discretize the state space - .28 As discussed in Achdou et al.

24We first construct the (sparse) grid and the associated (sparse) finite-difference matrices on the domain [0, 1]2 and then map these
to economic units.

25The value function that solves equation (46) has a point of non-differentiability at : = :∗ due to the non-convexity of the capital
income tax. We confirm this in our numerical analysis below. As a result, there exists no solution of equation (46) in the classical sense,
and we consequently focus on the solution concept of a viscosity solution. See Achdou et al. [2021] for further details.

26See, e.g., Achdou et al. [2021] for further details. In the earnings dimension, we assume reflecting boundaries at I and Ī.
27Our main numerical experiment is in partial equilibrium. That is, we hold constant the interest rate A across the different grids we

consider and only recompute the household value function + (:, I). In particular, an interest rate of A = 1.93% (1.94%) corresponds
to the rate that would clear the market for capital in an extension of the model without (with) capital income tax that also features a
representative firm that uses capital and labor in production.

28The non-convex capital income tax introduces a kink in the household value function+ (:, I) at :∗. The appropriate formal solution
concept for equation (46) is, therefore, that of a viscosity solution (see Achdou et al. [2021] for more details). Furthermore, the formal
consistency proof developed originally in Schiekofer [1998] applies to functions of bounded mixed derivatives, a condition that is
violated at :∗ whenever ^ > 0. However, our numerical analysis confirms that our finite-difference method yields an accurate solution
of + (:, I) despite the non-differentiability.
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Adaptive Sparse Grid Solution of the Aiyagari Model
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Figure 8 displays the numerical analysis for the Aiyagari model with diffusive earnings risk. Panels (a) and (b)
display the value function + (:, I) and consumption policy function 2(:, I) for an ASG that starts with a full
grid l0 = (5, 2) and refines 6 times. Panel (c) plots the norm !

9
∞ = max |+fine −+ 9 | for a sample of 30,000 grid

points, where +fine is solved on a fine full grid of 2,1 million grid points and {+ 9} is a sequence of solutions on
increasingly fine sets of full grids, LSGs and ASGs. For all three types of grids in Panel (c), we start with a
full grid of level l0 = (5, 2) and consider 5 successive refinement levels. For the ASG, we adapt the grid using
thresholds nadd = 10−5 and nkeep = 10−6.

[2021], there is no readily available accuracy metric in continuous time—similar to the Euler condition error
in discrete time —which would let us assess the residual error implied by a particular numerical solution of
the value function.29 Instead, we solve the household problem on a fine uniform grid with 2.1 million grid
points, which we denote+fine. We consider a sequence of grids {� 9} and solve for the household value function
+ 9 (:, I) on these grids using multi-linear hat functions as introduced above. To compute error metrics, we
sample 30, 000 points from - and project both +fine and + 9 on these points. Figures 8 and 9 then plot the sup
norm, that is,

!
9
∞ = max

���+fine −+ 9
���. (47)

Our main results are displayed in figure 8 for the baseline Aiyagari model without taxes, and in figure 9 for
the case with non-convex capital income tax. Both figures illustrate that ASGs substantially outperform both
LSGs and especially uniform grids in terms of numerical accuracy. Panels (a) and (b) of both figures display the
value and consumption policy functions on an ASG with maximum refinement level lmax = (11, 8), with 2, 840
grid points for the baseline model and 2, 966 points for the variant with capital income tax.30 Figure 9 shows
that the non-convex capital income tax introduces a kink into the value function and a discontinuity into the
consumption policy function. Grid adaptation places additional points close to the kink, especially for higher
earnings levels.31 Panels (c) in both figures plot the relative numerical error ! 9∞ across differently structured
grids with increasing numbers of grid points.

In this section, we illustrated the power of ASGs in the context of occasionally binding constraints and
non-convexities. In both cases, grid adaptation is powerful because grid points can be placed in regions of the
state space where the function + is very concave or non-differentiable. LSG methods also excel in the context
of free boundary problems, life-cycle models, high-dimensional dynamic programming problems, and many
other applications. Schaab and Zhang [2022] demonstrate the versatility and strengths of ASGs across a wide

29This is also the main reason why we focus on a relatively simple model in this section featuring only a two-dimensional state space.
30In the model without a capital income tax, the numerical approximation of the consumption policy function becomes non-concave

close to ( :̄ , Ī). This is an artifact of the boundary condition we use at :̄ , which forces households to dissave. We confirm numerically
that, for the calibration we use, the stationary distribution has vanishingly small mass in this region of the state space.

31Unlike in previous sections, we allow our grid refinement algorithm here to both add and remove grid points. For details, see
e.g., Ma and Zabaras [2009], Brumm and Scheidegger [2017], or Schaab and Zhang [2022]. We use refinement thresholds nadd = 10−5

for adding and nkeep = 10−6 for removing grid points.
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Adaptive Sparse Grid Solution of the Aiyagari Model with Non-Convex Capital Income Taxation
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Figure 9 shows the numerical analysis of Aiyagari model with diffusive earnings risk and non-convex capital
income tax. The details of the numerical exercise are parallel to figure 8.

range of continuous-time applications and develop an online repository with pedagogical sample codes.

Conclusion

SGs are a very efficient and mathematically well-studied way to tackle the numerical difficulties that arise
in dynamic stochastic models with high-dimensional state spaces. Therefore, they have become one of the most
popular methods for solving and estimating dynamic models in discrete and continuous-time settings with up
to dozens of continuous dimensions. Although the various formulations of SGs successfully allow for scaling
applications towards richer, more nonlinear settings while being only taxed moderately in terms of increased
compute time with increasing dimensionality, they are no silver bullet. In the following, we outline three of the
most common problems that may arise when applying SGs as solution techniques, and we discuss how to deal
with them in practice.

First, on LSGs and GSGs, the value functions or policy functions need to be approximated on a hypercube.
However, the ergodic set of dynamic economic models is often ex ante unknown and seldom hyper-cubic. Thus,
it constitutes only a small fraction of the encompassing hypercube. Consequently, approximating the economy
on a hypercubic domain can be wasteful and, in some cases, render the computation of solutions to models with
irregularly-shaped ergodic sets very expensive, if not impossible. This problem can be ameliorated by merging
simulation-based approaches with SG-based approaches, as proposed by Judd et al. [2014], Maliar and Maliar
[2015].

Second, in many applications in economics and finance, some of the fundamental probability density
functions that need to be approximated are multi-variate Gaussians. While a one-dimensional Gaussian can
be approximated well by a piecewise-linear basis, multi-linear functions can have a hard time approximating
multi-dimensional Gaussians. Spending more and more grid points can lead to significant approximation errors
for densities with low variance, as LSGs tend to under- and overshoot in practical applications (see, e.g., Pflüger
[2010]). In contrast, a straightforward measure that was shown to lift this issue is to approximate the logarithm
of the Gaussian likelihood, where only a few basis functions are typically sufficient to obtain small interpolation
errors [Frommert et al., 2010].

Third, even though SG methods alleviate the curse of dimensionality, their algorithmic complexity still
grows polynomially with increasing refinement level and dimension.32 This mathematical reality is worsened in
practice by the fact that the interpolation tasks, when solving, for instance, nonlinear sets of equations, take up to
99% of the computation time needed to solve the equation system, which is partly a result of the data structures
used. These limitations can be alleviated by choosing suitable data structures (to accelerate the interpolation
tasks) and leveraging the high degree of intrinsic parallelism present in SGs, which can lead to several orders of

32See Judd et al. [2014] for a thorough discussion of the increasing computational complexity in the context of Smolyak SGs.
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magnitude of speedup on contemporary high-performance computing architectures [Scheidegger et al., 2018].33
In addition, if the above measures do not provide sufficient performance gains for the model at hand, SGs

can be coupled with so-called high-dimensional model representation (HDMR) techniques (see, e.g., Eftekhari
et al. [2017], and references therein). The core idea of HDRM is to approximate high-dimensional functions by
decomposing them into a nested summation of lower-dimensional functions [Holtz, 2010], which themselves
are represented with SGs, thus imposing an additional layer of sparsity. Furthermore, such a dimensional
decomposition also increases computational separability, which is ideal for parallelization. Combining SGs
with HDMR has successfully been applied in the context of dynamic stochastic models containing up to 300
continuous state variables [Eftekhari and Scheidegger, 2020].

In summary, solving complex high-dimensional dynamic stochastic economic models numerically in rea-
sonable time imposes several roadblocks. However, the rapidly-evolving field of SG methods provides a
powerful framework that can handle a broad class of dynamic models up to a very high level of heterogene-
ity, non-linearity, and uncertainty—key features that, motivated by empirical observations, have become vital
ingredients for capturing the salient features in contemporary dynamic economic models.
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