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Abstract

We develop a tractable dynamic contracting framework to study bank bail-in regimes. In

the presence of a repeated monitoring problem, the optimal bank capital structure combines

standard debt, which induces liquidation and provides strong incentives, and bail-in debt, which

restores solvency but provides weaker incentives. Optimal policy increases use of bail-in debt

when there are fire sales. The social optimum can be implemented using either contracts or

a resolution authority. Our framework illuminates important policy questions including the

optimal composition of loss-absorbing capital, the trade-offs between ex ante and ex post bail-in

implementations, and the relationship between bail-ins and bailouts.
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1 Introduction

In the aftermath of the 2008 financial crisis, the question of orderly bank resolution has received

significant attention on both sides of the Atlantic. In many advanced economies, governments

employed bailouts to stem financial turbulence in late 2008 and early 2009.1 Bailouts were arguably

very effective at stabilizing financial markets, but have been criticized for leading to moral hazard

and perverse redistribution.2 As a result, the US (Title II of the Dodd-Frank Act) and the EU (Bank

Recovery and Resolution Directive) have introduced “bail-ins,” which allow resolution authorities

to impose haircuts on (long-term) debt holders. The goals of bail-in regimes include ensuring that

“creditors and shareholders will bear the losses of the financial company” and that “[n]o taxpayer

funds shall be used to prevent the liquidation of any financial company under [Title II]” (Dodd-Frank

Act Sections 204, 214). Nevertheless, important concerns emerge with the introduction of bail-ins.

If bank solvency can be improved by introducing state contingencies into debt contracts, then what

prevents banks from efficiently doing so using private contracts?3 Moreover, why are bail-ins

preferable from a regulatory perspective to other liability instruments—such as (outside) equity—or

to bailouts as a recapitalization tool? Studying these issues requires a framework in which debt is

part of an optimal liability structure.

The main contribution of this paper is to provide a simple and tractable dynamic contracting

model to study bail-in regimes. In particular, the optimal contract of our model can be implemented

with a combination of standard and bail-in debt. We leverage this framework to ask whether and

how a planner should design bail-in regimes.

Our three period model centers on a repeated incentive problem in the tradition of Innes (1990).

Banks raise funds from investors ex ante to finance lending. They must exert monitoring effort

1Two examples in the US are the Troubled Asset Relief Program (TARP), which authorized the government to buy
toxic bank assets, and the Temporary Liquidity Guarantee Program (TLGP), which provided guarantees of bank debt.

2The Dodd-Frank Wall Street Reform and Consumer Act (Dodd-Frank Act) lists “protect[ing] the American
taxpayer by ending bailouts” as one of its main objectives, and lists “minimiz[ing] moral hazard” (Section 204) as one
of the purposes of bail-ins.

3For example, banks could use contingent convertible (CoCo) securities that have gained traction in Europe, which
are an internal recapitalization instrument with a trigger event (for example, the bank’s capital ratio falling below some
threshold) for either a principal write-down or a conversion into equity.
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at both the initial date (0) and the middle date (1) in order to ensure the quality of their loans

at the onset of the lending relationship and in its continuation. Because monitoring effort is not

contractible at either stage, the optimal contract must be written to incentivize effort. Our model

remains tractable because we show that the date 1 Innes (1990)-style incentive constraint can be

represented as constraint on pledgeable income (Holmstrom and Tirole 1997), that is as a minimum

required agency rent in continuation. Banks write optimal liability contracts in a complete markets

setting. They can choose to pledge liabilities that will exceed assets in some states. When liabilities

exceed assets at date 1, the bank is liquidated. Liquidation implies the bank need not be paid its

continuation agency rent, but it is costly because it reduces ex post recovery to both banks and

investors.

Our main result is that the privately optimal bank contract can be implemented with a combina-

tion of two debt instruments: standard debt and bail-in debt. Standard debt has a face value that does

not depend on the bank’s date 1 return, and leads to insolvency and liquidation when bank returns

are low.4 This provides strong incentives to the bank for initial monitoring effort because liquidation

eliminates the minimum continuation agency rent needed to incentivize effort at date 1. While

standard debt ensures the bank receives no payoff in bad states, it requires costly liquidation that

reduces investor repayment. Bail-in debt, on the other hand, avoids the resource costs of liquidation.

It provides weaker incentives, however, because it transfers all cash flows to investors except for the

minimum agency rent. Both instruments retain the upside for the bank, which encourages effort.

Other instruments such as outside equity transfer cash flows from the bank to investors when returns

are high, and so discourage effort. The bank finds it optimal not to use such instruments.

In practice, banks made little to no use of bail-in debt prior to its introduction in the post-crisis

regulatory regime. Our model can generate this outcome as a corner solution of no bail-in debt. We

show that higher expected recovery values from liquidation increase the use of standard debt and,

if incentive effects are not too strong, reduce or eliminate the use of bail-in debt. Our model can

4Our model does not differentiate between standard short-term debt and (uninsured) deposits, and standard debt
could be interpreted as a deposit. It could also be interpreted as a repurchase agreement, where insolvency arises when
the value of collateral falls sufficiently far that it no longer covers the debt.
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thus rationalize scant use of bail-in debt prior to the crisis if banks perceived recovery values to be

relatively high, for example due to an expectation that bailouts would raise equilibrium liquidation

prices during crises.

Although we frame our model around banks, the core optimal contracting framework can also

apply to non-financial corporates. We provide an interpretation of bail-ins in our model as a Chapter

11 bankruptcy reorganization process, with liquidations corresponding to Chapter 7.

The second part of our contribution is to leverage our framework to study optimal policy.

Individual banks fail to internalize that more liquidations can reduce the liquidation price due

to fire sales. We study the problem of a social planner who uses a complete set of Pigouvian

wedges to influence the bank’s choice of contract structure, internalizing the fire sale externality.

In principle, the social planner can incentivize banks to write any feasible contract, for example

incorporating outside equity. However, we show that the social planner finds it optimal for banks to

use a combination of standard and bail-in debt. The planner does not require banks to introduce

other liability instruments such as outside equity into their capital structures. Intuitively, as with

the private bank, the social planner also perceives bail-in debt to be better than outside equity for

incentive provision. Relative to the private optimum, however, the social planner increases the use

of bail-in debt and reduces the use of standard debt to mitigate the fire sale. We show that the social

optimum can also be implemented by requiring minimum issuance of bail-in debt or by instituting a

resolution authority that imposes write downs ex post. The structure of this resolution authority

closely resembles the architecture of existing resolution regimes such as Title II.

Our model allows us to study the optimal composition of total loss-absorbing capital (TLAC).

In practice, regulation includes both minimum bail-in debt requirements and minimum equity capital

requirements. First, we extend the model to feature aggregate uncertainty over the magnitude of the

fire sale (crisis severity). We show that optimal policy involves a dual trigger: the extent to which

bail-in debt is written down increases with crisis severity. The planner implements this by requiring

minimum issuance of bail-in debt and then imposing crisis-specific write-downs. Second, we extend

the model to incorporate a continuous—rather than binary—effort choice. The optimal contract still
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combines standard and bail-in debt, but more total debt reduces effort in a continuous sense. Since

lower effort raises the probability of liquidation, the planner has a new motive to regulate the total

debt level—rather than only its composition—via a minimum equity requirement.

Our model has implications for the desirability of implementing bail-ins via an ex post

resolution authority relative to ex ante contractual write-downs. The two approaches are equivalent

in our baseline model, but the implementation requires perfect contractibility. When crisis severity

is not perfectly contractible, a utilitarian resolution authority is always tempted to resolve as

many banks as possible. Absent an incentive mechanism to control the resolution authority, the

planner can do no better than to use an ex ante approach without a dual trigger. This leads to too

few liqudiations in normal times and too many during severe crises. To manage the resolution

authority’s time consistency problem while respecting non-contractibility, we propose a plausible

incentive mechanism that imposes larger punishments (rewards) for resolving more (fewer) banks.

Our mechanism can be implemented under the structure of Title II: The resolution authority can

resolve top tier holding companies without cost, but must pair resolution of operating subsidiaries

with costly partial bailouts.

The post-crisis regime has emphasized replacing bailouts with bail-ins. We leverage our

framework to study this important question. We introduce taxpayer-financed bailouts and ask

whether a planner with commitment would find it desirable to commit to resolve some banks with

bailouts. We show that the socially optimal contract is exactly the same as before, and that bail-ins

fully replace bailouts. Intuitively, bail-ins and bailouts can achieve the same state contingencies in

bank debt contracts, so that bailouts are at best Pareto inefficient resource transfers from taxpayers

to banks. Our model thus substantiates a core principle of post-crisis regulatory reform, namely that

the costs of bank resolution should be borne by bank investors and not by taxpayers.

Finally, we discuss our model in the context of too-big-to-fail institutions and demand-based

theories of standard debt. We argue that partial liquidations through a good bank/bad bank approach

can be preferable to an all-or-nothing resolution approach for large banks. We compare our model to

demand-based (safety premia) theories of debt, and discuss how a combination of the two theories
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can provide a more complete view of bank capital structure.

Related Literature. We relate to a growing literature on bail-ins.5 Keister and Mitkov (2021)

show that banks may not write down their (deposit) creditors if they anticipate government bailouts,

motivating mandatory bail-ins. Chari and Kehoe (2016) use a costly state verification model to show

that standard debt is the only renegotiation-proof contract, implying that bail-ins serve only to reduce

the level of standard debt. Pandolfi (2021) studies a related Holmstrom and Tirole (1997) incentive

problem but takes standard debt contracts as given. The paper argues that bail-in resolution can lead

to a credit market collapse by weakening incentives, thus motivating liquidations or partial bailouts.

Mendicino et al. (2018) study the optimal TLAC composition for protecting insured deposits under

private benefit taking and risk shifting, taking contracts as given. Walther and White (2020) show

that precautionary bail-ins can signal adverse information and cause a bank run, resulting in an

overly weak bail-in regime and motivating bail-in rules based on public information. Colliard

and Gromb (2018) study how bail-ins and bailouts affect the negotation process of distressed

bank restructuring. Bolton and Oehmke (2019) study the trade-offs between single- and multi-

point-of-entry resolution of global banks. Dewatripont and Tirole (2018) study how bail-ins can

complement liquidity regulation. Berger et al. (2020) provide a quantitative analysis of bailouts

versus bail-ins. Our main contribution is to develop a tractable dynamic contracting framework

based on an incentive problem, in which the privately optimal contract can be implemented with a

combination of standard and bail-in debt. We leverage this framework to study the optimal design

of bail-in regimes.

A vast literature studies theories of debt.6 Our paper is closely related to the dynamic optimal

contracting literature that studies repeated unobservable effort.7 DeMarzo and Sannikov (2006) and

5There are also related literatures on contingent debt insturments (Flannery 2002, Raviv 2004, Sundaresan and
Wang 2015, Pennacchi and Tchistyi 2019, with Flannery 2014 providing a broader overview) and optimal derivatives
protection (Biais et al. 2016, Biais et al. 2019).

6Apart from incentive problems, theories of debt include costly state verification (Townsend 1979), liquidity
provision (Diamond and Dybvig 1983), and asymmetric information (Myers and Majluf 1984, Nachman and Noe 1994).
We also connect in particular to the related literature that emphasizes the monitoring role of banks (Diamond 1984,
Holmstrom and Tirole 1997).

7Relatedly, debt contracts that become more expensive to service (higher interest rate or coupon payment) have
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DeMarzo and Fishman (2007) implement optimal contracts using combinations of long-term debt,

credit lines, and equity. Credit lines provide firms with financial flexibility following bad returns,

but are costly to revolve. This costly financial flexibility serves a similar role to our bail-in debt.

Long-term debt requires coupon payments, forcing default and liquidation once the credit line is

exhausted. The liquidation threat parallels the role of our standard debt. Our paper contributes to

this literature by incorporating its ingredients (repeated unobservable effort) and insights into a

simple framework that we use to rationalize the coexistence of standard and bail-in debt, which

are especially important in the bank regulatory context. We use our framework to study normative

policy implications for the design of bail-in regimes. A number of papers separately emphasize the

cash flow transfer (Jensen and Meckling 1976, Innes 1990, Dewatripont and Tirole 1994, Hébert

2018) and liquidation threat (Calomiris and Kahn 1991, Diamond and Rajan 2001) values of debt.8

Our paper is also related to Bolton and Scharfstein (1996), who study strategic default with cash

flow diversion. They emphasize the value of easy-to-renegotiate debt for preventing non-strategic

default and hard-to-renegotiate debt for preventing strategic default.

A large literature studies macroprudential regulation in the presence of pecuniary externalities

(Bianchi and Mendoza 2010, Bianchi and Mendoza 2018, Caballero and Krishnamurthy 2001,

Dávila and Korinek 2018, Farhi et al. 2009, Lorenzoni 2008), aggregate demand externalities

(Farhi and Werning 2016, Korinek and Simsek 2016, Schmitt-Grohé and Uribe 2016), and fiscal

externalities (Chari and Kehoe 2016, Farhi and Tirole 2012), which motivate ex ante interventions

such as leverage requirements. Our model rationalizes interventions that increase bail-in debt

relative to other loss-absorbing instruments such as equity, thus emphasizing the importance of the

composition rather than the overall level of debt.

been emphasized to promote liquidation in settings with repeated cash flow diversion (Biais et al. 2007) and screening
(Manso et al. 2010).

8In similar spirits, Philippon and Wang (2022) studies use of bailout tournaments to provide equity-like incentives
for lower risk taking while Zentefis (2021) studies disciplining effects of bailouts accompanied with managerial equity
stake diluations.
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2 Model

The three-period economy, t = 0,1,2, has a unit continuum of banks, investors, firms, and arbi-

trageurs. Banks are run by their owners (inside equity). Banks invest in a firm of variable scale

Y0 = A0 + I0 > 0 by using their own funds, A0 > 0, and by signing contracts with investors to raise

I0 ≥ 0. Investors are deep-pocketed at date 0 and can finance any investment scale. Firms are

penniless and have an outside option of zero. We allocate the entire value of the bank-firm lending

relationship to the bank. Arbitrageurs will buy projects (firms) that are liquidated prior to maturity.

Banks and investors are risk-neutral and do not discount the future. We denote bank con-

sumption by (c0,c1,c2), so that bank expected utility is given by E0 [c0 + c1 + c2]. We denote the

payments to investors by (x1,x2). xt is the actual amount received by investors, and is distinct from

the face value of liabilities (that is, promised repayment). Investor expected utility from the bank

contract is E0 [−I0 + x1 + x2]. Contracts are subject to limited liability constraints for banks, given

by

c0,c1,c2 ≥ 0. (1)

Limited liability is not required for investors, with xt < 0 denoting investors making a payment to

the bank. However, the optimal contract of the model will result in non-negative investor payoffs.

The economy features idiosyncratic uncertainty, but no aggregate uncertainty.9

We tailor our model to study the trade-off between standard debt and bail-in debt. Our baseline

model will have no role for instruments such as outside equity, or for other trade-offs that affect the

use of debt such as tax benefits. We consider such extensions in the appendix.

2.1 Bank Projects

Banks extend financing to firms, thereby establishing a lending and monitoring relationship with

those firms. When first extending funds to firms, banks monitor their borrowers, ensuring that the

projects undertaken are of good quality. In doing so, banks develop specialized knowledge of that

9See Appendix B.2 for aggregate uncertainty.
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firm, and are uniquely able to monitor and collect from the firm in continuation. This relationship is

the foundation of banking in our model. Because we allocate all value of the lending relationship to

the bank, we omit firms going forward and refer to the relationship as bank projects.

Our model proceeds similarly to a multi-period version of Innes (1990). At each of dates 1 and

2, the bank experiences a stochastic quality shock Rt , which adjusts the project scale to Yt = RtYt−1.

This means the final project scale is Y2 = R2R1Y0. The project pays off one unit of the consumption

good per unit of final scale if held to maturity at date 2, but yields no dividend at date 1. The

shocks Rt are independent and idiosyncratic, with densities ft,et−1 that have support over [R,R]. Both

states Rt are contractible. However, the distribution of Rt depends on the bank’s non-contractible

monitoring effort at the prior date, et−1 ∈ {H,L}, where H is high monitoring effort and L is low

monitoring effort. We think of e0 as an initial monitoring/screening of borrowers and e1 as continued

due diligence and collections. For notational convenience, we normalize E[R2|e1 = H] = 1.

Define the likelihood ratio Λt(Rt) ≡ ft,L(Rt)
ft,H(Rt)

. We assume that ft,e satisfies the monotone

likelihood ratio property (MLRP), that is Λ′t < 0. MLRP is a standard assumption in generating

debt contracts, and implies that high (low) returns are a signal that the bank exerted high (low)

monitoring effort. However, if a bank exerts low monitoring effort at date t−1, it receives a private

benefit Bt−1Yt−1, with B0,B1 > 0. This private benefit is enjoyed by the bank even if the project is

terminated at a later date. We assume throughout the paper that the bank finds it optimal to write a

contract that induces high monitoring effort at both dates, that is e0 = e1 = H.10

Because monitoring effort is non-contractible, the bank sequentially chooses effort to max-

imize its utility after contracts have been signed. Effort e1 is chosen after R1 has been observed,

10Given our normalization on the date 2 return, jointly sufficient conditions for banks to find it optimal to write a
contract inducing high effort are

1 < E[R1|e0 = H]

E[R1|e0 = L]+B0 < 1

E[R0|e0 = H](B1 +E[R2|e1 = L])< 1

in which case the project is NPV positive under repeated high effort, but NPV negative if low effort is ever exerted
(note that these conditions jointly imply that e0 = e1 = L is not optimal, since E[R0|e0 = L](B1 +E[R2|e1 = L])+B0 <
E[R0|e0 = L] 1

E[R1|e0=H] +B0 < 1). If optimal contracts induced low effort, incentive compatibility would either not
bind or would lead the bank to adopt a capital structure that rewarded the bank for low returns and punished it for high
returns.
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assuming the bank is not liquidated at date 1. Given the consumption profile ct under the con-

tract signed, the bank exerts high monitoring effort at date 1 if E [c1(R1)+ c2(R1,R2)|e1 = H] ≥

E [c1(R1)+ c2(R1,R2)|e1 = L]+B1R1Y0 (we include c1 without loss). We rearrange this incentive

compatibility constraint to obtain the representation

E
[
(c1(R1)+ c2(R1,R2))(1−Λ2(R2))

∣∣∣∣e1 = H
]
≥ B1R1Y0, (2)

Higher payoffs c2(R1,R2) in states where the likelihood ratio Λ2(R2) is low relax incentive compat-

ibility because these states signal that monitoring effort was high (note that c1 drops out).

Because equation (2) must hold for any R1 under which the bank continues operating at date 2,

banks’ effort choice at date 0 can be undertaken assuming that high effort will be undertaken at date

1. It is helpful therefore to define

c(R1)≡ E
[

c1(R1)+ c2(R1,R2)

∣∣∣∣e1 = H
]
,

which is expected bank consumption when state R1 is realized under an incentive compatible

contract, with c(R1) = 0 if the bank is liquidated at date 1. Analogous to the derivation of equation

(2), incentive compatibility at date 0 is given by,

E
[

c(R1)(1−Λ1(R1))

∣∣∣∣e0 = H
]
≥ B0Y0, (3)

so that higher expected payoffs c(R1) relax date 0 incentive compatibility when the likelihood ratio

Λ1(R1) is low, with the same logic as for date 1 incentive compatibility.

Banks can liquidate their project prematurely at date 1, in which case the project yields γY1 <Y1

units of the consumption good at date 1 and nothing at date 2, with the proceeds accruing entirely

to investors.11 Liquidations will be ex post inefficient (money burning) in a sense formalized

11We think of the liquidation discount as arising from selling projects to second-best users (Section 2.6), who have
not developed the knowledge of the firm lending relationship that the bank has. In this sense, we also assume the banker
is not severable from the bank.
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below. Because the project pays out at date 2, there is no resource cost associated with insolvency

(liabilities exceed assets) at date 2.

2.2 Investors

In order to raise investment I0 ≥ 0, banks pledge state-contingent repayment to investors at date

0. The banks’ state-contingent repayment contract is a triple (α1,x1,x2). α1(R1) ∈ {0,1} specifies

whether the bank will be liquidated at date 1, with α1 = 1 denoting liquidation. x1(R1) is actual

repayment to investors at date 1 and x2(R1,R2) actual repayment at date 2, in each case with negative

values denoting a payment from investors to the bank. We first set up the problem in the repayment

space, and then in Section 2.5 map into promised liabilities.

Given a repayment contract (α1,x1,x2), the expected payoff to investors at date 1 under an

incentive compatible contract is given by

x(R1) = α1(R1)γR1Y0 +(1−α1(R1))E
[

x1(R1)+ x2(R1,R2)

∣∣∣∣e0 = H
]
. (4)

When the bank is not liquidated, we have c1(R1)+ c2(R1,R2) = R1R2Y0− x1(R1)− x2(R2). This

means that expected bank consumption at date 1 is

c(R1) = (1−α1(R1))(R1Y0− x(R1)) (5)

given that we normalized E[R2|e1 = H] = 1.

The voluntary investor participation constraint states that investors must at least break even in

expectation on the contract they signed. It is given by

Y0−A0 ≤ E [x(R1)|e0 = H] . (6)

where I0 = Y0−A0 is the amount financed by investors.

Finally, we assume repayment monotonicity at both dates: x(R1) must be monotone in R1 (that
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is, expected investor repayment is monotone in R1) and x2(R1,R2) must be monotone in R2 (for

given R1). Formally, these assumptions are

R1 ≥ R′1⇒ x(R1)≥ x(R′) (7)

R2 ≥ R′2⇒ x2(R1,R′2)≥ x2(R1,R′2). (8)

Monotonicity is a common assumption in many settings of optimal contracts or security design,

although in Appendix B.3 we characterize optimal contracts without monotonicity and argue our

insights for optimal policy still hold.12 It generates the flat face value of liabilities in high-return

states. Note that monotonicity does not preclude a bank from issuing an individual instrument

whose payoff profile is non-monotone, but rather states that the overall structure summed across

instruments must be monotone.

2.3 Bank Optimal Contracting

The bank signs a contract with investors, which specifies initial funds provided I0 in exchange for a

promised repayment scheme (α1,xt). The contract must be feasible, which we now define.

Definition 1 (Feasible Contracts). A bank contract C = (α1,xt , I0,ct ,Y0) is feasible if it satisfies:

(1) limited liability; (2) incentive compatibility at date 1 when the bank continues; (3) incentive

compatibility at date 0; (4) determination of x; (5) determination of c; (6) investor participation;

(7) date 1 montonicity; (8) date 2 monotonicity; and the final budget constraint under continuation,

c1(R1)+ c2(R1,R2) = R1R2Y0− x1(R1)− x2(R2).

Banks choose a feasible contract C to maximize their own expected utility,

E [c(R1)|e0 = H] . (9)

12For example, one justification offered is that banks would be incentivized to pad their returns, for example by
secretly borrowing from a third party (Nachman and Noe 1990, Nachman and Noe 1994).
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2.4 Pledgeable Income and Continuation Agency Rent

Much of the tractability of our model comes arises because we show that the date 1 Innes (1990)

incentive compatibility constraint can be re-represented as Holmstrom and Tirole (1997) style

pledgeability constraint on income. This implies a minimum continuation agency rent for the bank,

and is implemented by a continuation debt contract. We formalize this notion in the following

lemma.

Lemma 2. When α1(R1) = 0 and the bank is not liquidated, the optimal contract features debt in

the continuation contract. That is, there is a threshold return Ru
2(R1) such that

x1(R1)+ x2(R1,R2) =

 R2R1Y0, R2 ≤ Ru
2(R1)

Ru
2(R1)R1Y0, R2 > Ru

2(R1)

Incentive compatibility at date 1 (2) can be represented as a constraint on pledgeable income,

c(R1)≥ bR1Y0 (10)

where b≡ ∫ R
Ru

2
[R2−Ru

2] fH(R2)dR2 and where
∫ R

Ru
2
[R2−Ru

2](1−Λ2(R2)) fH(R2)dR2) = B1.13

Lemma 2 allows us to re-represent the problem of incentive compatibility at date 1 as a required

agency rent b to the bank in continuation as a fraction of its expected final project value, Y2 =

E[R2|e1 = H]R1Y0 = R1Y0. It equivalently tells us that (1− b)R1Y1 is the maximum value of the

project that is pledgeable to investors. It also provides a contract that respects liability monotonicity

at date 2 (equation 8) and the final budget constraint.

For the remainder of the paper, we exploit Lemma 2 to define contracts in terms of date 1

pledged expected values (x,c). This means that x can be interpreted as the market value of external

13In equilibrium, date 1 incentive compatibility does not always bind, in which case there can be multiple monotone
continuation contracts that achieve the same bank and investor expected payoffs and maintain incentive compatibility at
both dates. For consistency, we use a debt contract when (2) does not bind. (2) does not bind when (10) does not bind,
that is bank consumption exceeds its minimum agency rent.
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liabilities at date 1, with Lemma 2 characterizing the final debt level that achieves that market value.

Finally, we assume that γ ≤ 1− b, which means that pledgeable income is always weakly

higher by continuing the project than by liquidating it. As a result, liquidations destroy value ex

post for both the bank and investors.

2.5 Liabilities, Market Value, and Face Value

We now map the liquidation rule α1 and market value x into a more natural setting of promised

liabilities. A promised repayment is L(R1). If L(R1) ≤ (1− b)R1Y0, then the bank is solvent

and hence x(R1) = L(R1), that is market value equals promised repayment. If instead L(R1) >

(1−b)R1Y0, then promised repayment exceeds pledgeable income. In this case, the bank will be

liquidated, α1(R1) = 0, and actual repayment will be x(R1) = γR1Y0. For the rest of the paper, we

represent contracts in terms of promised liabilities L.

We refer to L as the face value of liabilities. Face value is the same as promised market value

if we implement the optimal contract with short-term state-contingent liabilities that can be rolled

over at price 1 if the bank is solvent. The two notions exactly coincide under more general maturity

structures if we assume R2 has a degenerate distribution at 1 if e1 = H (Holmstrom and Tirole

1997).

Liquidations and Ex Post Renegotiation. Our model has ruled out renegotiation at date 1 when

liabilities exceed pledgeable income. Banks can implement the outcome of any feasible renegotiation

using state-contingent contracts, meaning renegotiation cannot increase ex ante welfare. However,

renegotiation creates a time consistency problem: since γ < 1−b, liquidations are ex post Pareto

inefficient, motivating banks and investors to renegotiate ex post. Thus, if a bank ex ante finds it

optimal to pledge a liability structure that results in liquidations, it would also prefer to rule out

(or make as difficult as possible) renegotiation. For example, if debt is an optimal contract because

it liquidates the bank, a bank might implement it using runnable demand deposits dispersed over

many creditors in order to make renegotiation difficult. This is in keeping with parts of the banking
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literature that emphasize the value of demand deposits as a threat to liquidation (Calomiris and

Kahn 1991, Diamond and Rajan 2001). This idea is also consistent with the design of the Title II

process, which focuses debt write-downs on long-term debt and not on short-term debt or deposits,

due to a concern that “the threat of a restructuring may cause clients to flee and short-term creditors

to withdraw their capital” (French et al. 2010).14

2.6 Arbitrageurs and Liquidation Prices

We introduce a simple fire sale exterality into the model to motivate studying optimal policy. Banks

are small and take γ as given. A representative arbitrageur purchases bank projects at date 1 and

converts them into the consumption good using a technology F (Ω)Y0, where Ω is the fraction of

total bank projects purchased relative to initial scale. Arbitrageur surplus at date 1 from purchasing

projects is F (Ω)Y0− γΩY0, yielding an equilibrium liquidation price

γ = γ(Ω) =
∂F

∂Ω
, Ω =

∫
R1

α(R1)R1 f1,H(R1)dR1. (11)

If ∂F
∂Ω

= γ is a constant which does not depend on Ω, then there is no fire sale. By contrast if

∂γ

∂Ω
= ∂ 2F

∂Ω2 < 0, there is a fire sale: more liquidations reduce the liquidation value. To ease exposition,

we assume constant elasticity of the liquidation price, Ω

γ

∂γ

∂Ω
=−σ , with σ < 1.15 σ = 0 is the case

of a constant liquidation discount.

Arbitrageurs have initial wealth A−A0, but cannot borrow against future income. Their total

date 0 welfare is u(A−A0)+(F (Ω)Y0− γΩ)Y0, with u′(A)> 1 so that the borrowing constraint

binds. The intertemporal borrowing constraint gives rise to a distributive externality (Dávila

and Korinek 2018) that makes fire sales Pareto inefficient (see Appendix B.1). The inefficient

14Moreover, Title II resolution includes a “clean holding company” requirement, which bars the top tier holding
company (the target of resolution) from issuing any short-term debt to external investors (12 CFR §252.64).

15Formally, we set F = γ(σ)Ω1−σ−1
1−σ

. We restrict σ < 1 so that total funds raised from liquidations, ∂F
∂Ω

Ω =

γ(σ)Ω1−σ , increases in total liquidations and goes to zero as liquidations go to zero. We make the constant γ(σ) = γΩ
σ

for some sufficiently small Ω, which ensures that γ(σ ,Ω) = γ for any σ and that ∂γ

∂σ
< 0 for all Ω≥Ω. We generally

focus on cases where either σ = 0 or Ω≥Ω in equilibrium.
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distributive externality arises because the borrowing constraint creates means arbitrageurs have a

higher marginal value of wealth at date 0 than at date 1.16

3 Privately Optimal Contracts

In this section, we show that the privately optimal contract written by banks can be implemented by

a combination of two debt instruments. The first, which we call standard debt, has a fixed face value

that does not depend on R1, and liquidates the bank in low-return states. The second, which we call

bail-in debt, has a face value that can be written down based on R1, and restores bank solvency

when total debt exceeds the pledgeable income.

We begin by characterizing the privately optimal bank contract in terms of two thresholds in

the date 1 return, R` and Ru. We then associate these two thresholds with the two debt instruments.

These thresholds summarize the privately optimal liability structure of the bank.

Proposition 3. A privately optimal bank contract has a liability structure

L(R1) =


(1−b)R`Y0, R1 ≤ R`

(1−b)R1Y0, R` ≤ R1 ≤ Ru

(1−b)RuY0, Ru ≤ R1

where 0 ≤ R` ≤ Ru ≤ R. The bank is liquidated if and only if R1 ≤ R`. These thresholds, when

interior and not equal,17 are given by

µb(Λ1(R`)−1)︸ ︷︷ ︸
Incentive Provision

= b+λ (1−b− γ)︸ ︷︷ ︸
Liquidation Costs

(12)

16This externality is similar to the case where there are multiple date 1 aggregate states, and incomplete markets
prevent arbitrageurs from equating the marginal value of wealth across date 1 states.

17For the remainder of the paper, we assume that the thresholds are interior and not equal, except when explicitly
stated otherwise. Generally speaking, R` will be interior when the likelihood ratio Λ(R) is sufficiently large, that is
when R is a sufficiently good signal of low effort. Ru will be interior when Λ(R) is sufficiently small and µ > λ −1,
that is when R is a sufficiently good signal of high effort. Section 3.3 studies the possibility that R` = Ru.
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0 = E
[

λ −1︸ ︷︷ ︸
Investor Repayment

− µ (1−Λ1(R1))︸ ︷︷ ︸
Incentive Provision

∣∣∣∣ R1 ≥ Ru,e = H
]

(13)

where µ > 0 is the Lagrange multiplier on date 0 incentive compatibility (3) and λ > 1 is the

Lagrange multiplier on investor participation (6).

All proofs are contained in Appendix A.18 An optimal bank contract is defined by three

regions, illustrated in Figure 1. In the first region, R1 ≤ R`, the face value of liabilities exceeds

pledgeable income and the bank is liquidated following a low date-1 return. In the second region,

R` ≤ R1 ≤ Ru, all pledgeable income of the bank is transferred to investors, leaving the bank with

only the continuation agency rent to induce high effort at date 1. In the third region, R1 ≥ Ru, all

additional income generated by higher returns accrues to the bank and investors receive the same

amount (1−b)RuY0 regardless of the return realization.

Equation (12) describes the marginal trade-off the bank faces in choosing the liquidation

threshold R`. On the one hand, liquidating the bank results in a total resource loss b+λ (1−b− γ)

to the bank and investors. On the other hand, pledging to liquidate the bank provides higher-powered

monitoring incentives at date 0, reflected in the term µb(Λ1(R`)−1), by depriving the bank of its

continuation agency rent bR`Y0 necessary to ensure date 1 incentive compatibility. The optimal

choice of R` trades off these two effects. In particular, the liquidation threshold features Λ1(R`)> 1,

that is at R` the likelihood ratio is greater than 1 and is more in line with low effort having been

exerted.

Equation (13) summarizes the marginal trade-off in choice of Ru. On the one hand, the binding

investor participation constraint implies that transfering pledgeable income to investors is valuable

because it allows the bank to increase project scale (λ −1 > 0). On the other hand, increasing the

total debt level reduces bank consumption in high-return states, where the likelihood ratio Λ1(R1) is

18In the proof of this proposition, see Appendix A.2.1 for a comment on non-uniqueness of total promised repayment
L(R1) below R`. Non-uniqueness arises in this region because any face value of liabilities above (1−b)R1Y0 results
in bank liquidation. We have chosen the face value of liabilities that correspond to standard debt, which seems most
natural in the context of banks and bail-ins. Moreover, uniqueness is restored if there is an ε → 0 premium for standard
debt, for example due to tax benefits of debt. The face value of liabilities is unique above R`.
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low and the signal of high effort is stronger. This weakens bank monitoring incentives and tightens

the date 0 incentive compatibility constraint (3). The optimal choice of Ru equalizes these two

effects on the margin.

We now associated the privately optimal contract with two liability instruments: standard debt

and bail-in debt.

Corollary 4. The privately optimal contract can be implemented with a combination of standard

debt with face value (1−b)R`Y0, which cannot be written down contingent on the idiosyncratic

state R1, and bail-in debt with face value (1−b)(Ru−R`)Y0, which can be written down contingent

on the idiosyncratic state.

Corollary 4 provides a natural implementation of the optimal contract in this setting. In the

region R1 ≤ R`, standard debt face value exceeds pledgeable income and results in liquidation. In

the region R` ≤ R1 ≤ Ru, bail-in debt is written down to (1− b)(R1−R`)Y0, so that the bank is

just held to its minimum agency rent. In the region R1 ≥ Ru, bail-in debt is not written down and

investors receive the full face value of both contracts.

For the remainder of the paper, we associate standard and bail-in debt with the thresholds R`

and Ru, respectively, rather than writing out their associated (face value) liabilities.

Alternate Contract Implementations. The implementation of Proposition 3 that most closely

resembles bail-in regimes in practice is short-term standard debt and long-term bail-in debt.19 This

implementation is not unique. First, the maturity structure is not unique: it could be implemented (in

principle) with entirely short-term debt, or with some long-term standard debt (and sufficient short-

term debt to force liquidation).20 Second, the implementation could involve different instruments

19Bail-in debt can also be interpreted as a contingent convertible (CoCo) debt instrument (see Avdjiev et al. 2017
and Flannery 2014 for more background). Bail-in debt in our model is a principal write-down CoCo debt security that
applies at the point of non-viability.

20Note that due to the liquidation discount, R` can be implemented with γR` < (1−b)R` of short-term standard
debt and (1−b− γ)R` of long-term standard debt, since short-term debt can force full liquidation at date 1 due to the
discount when R1 < R`.
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entirely, for example: (i) standard debt and outside equity, with a managerial compensation scheme

to pay the bank c(R1);21 (ii) partial-bail-in debt, which can only be written down to (1−b)R`Y0.

3.1 The Role of Agency Problems and Costly Liquidation

Our model features three key ingredients: an initial incentive problem (B0 > 0), a continuation

agency rent (b > 0), and costly liquidations (γ > 0). Absent all three ingredients, the optimal

contract in our model can be implemented without combining standard and bail-in debt.

Proposition 5. The privately optimal contract can be implemented with a single liability instrument

if B0 = 0, b = 0, or γ = 1. In particular,

(a) If B0 = 0, then the privately optimal contract can be implemented with bail-in debt.

(b) If b = 0, then the privately optimal contract can be implemented with long-term debt.22

(c) If γ = 1, then the privately optimal contract can be implemented with standard debt.

When B0 = 0, there is no required agency rent at date 0 (incentive compatibility is maintained

with any contract with monotone bank payoff), but there is a required agency rent at date 1.

Therefore, the bank can ensure incentive compatibility at both dates by using a debt contract

set according to Lemma 2. However, R1 still requires the contract to adjust the level of debt in

continuation to maintain date 1 incentive compatibility. As a result, a bail-in debt contract suffices.

As a result, a date 0 incentive problem, that is B0 > 0, is necessary in our model to generate an

optimal contract that combines standard and bail-in debt.

The second and third cases of Proposition 5 show that B0 > 0 alone is not sufficient to generate

a privately optimal contract that combines standard and bail-in debt. When B0 > 0, the privately

optimal contract employs some debt instrument for ex ante incentive reasons. In the second case

with b = 0, all income is pledgeable to investors, and the bank can guarantee zero consumption,

21Under this implementation, outside equity would have the same payoff profile bail-in debt did in Corollary 4.
22Note that it could also be implemented with bail-in debt.
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c(R1) = 0, without having to liquidate the project prior to maturity. This case is analogous to

Innes (1990), and means that the bank finds it optimal to only use long-term debt to avoid costly

liquidations. In contrast in the third case, with γ = 1 but b > 0, there is a limit to pledgeable income,

but no bankruptcy costs from liquidation. Banks can repay any amount x(R1)≤ R1Y0 by liquidating

bank projects, and the pledgeability constraint ceases to be relevant. Banks use only standard debt.

In all cases of Proposition 5, the key property of debt is the cash flow transfer from the bank to

investors in low-return states and fixed repayment in high-return states (e.g., Innes 1990, Hébert

2018). In absence of ex ante incentive problems, cash flow transfer is achieved with bail-in debt. In

the absence of continuation agency rents, cash flow transfer is achieved with long-term debt. In

the absence of bankruptcy costs, cash flow transfer is achieved with standard debt. However, if

there are ex ante incentive problems, continuation agency rents, and bankruptcy costs, then bail-in

debt cannot enact a full cash flow transfer, while standard debt enacts a full cash flow transfer at a

resource cost. A role emerges for both forms of debt in the optimal contract.

3.2 Bail-in Debt or (Outside) Equity?

Proposition 3 and Corollary 4 highlight why bail-in debt can be a valuable loss-absorbing instrument

for banks, relative to equity. Bail-in debt combines the incentive properties of standard debt with

the loss-absorbing properties of equity. It generates a maximal cash flow transfer below Ru and a

flat investor payoff above Ru, similar to standard debt, but does so without liquidating the bank (as

standard debt does). By contrast, equity transfers the upside of the bank to investors. Transferring

more of the upside of the bank to investors worsens incentives due to MLRP, since higher returns

signal that the bank likely exerted high effort. Bail-in debt recapitalizes the bank in the same

manner as equity on the downside, but generates better incentives on the upside. This leads banks

to prefer bail-in debt to equity as a loss-absorbing instrument even in the private optimum without

any intervention by a social planner.23

23In Appendix B.6 we add a role for outside equity in the model by incorporating risk aversion and risk shifting. We
show that the core trade-off between standard debt and bail-in debt exists as in the baseline model.
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3.3 Why Didn’t Banks Issue Bail-in Debt before 2008?

Although Proposition 3 states that privately optimal bank contracts combine standard and bail-in

debt, bail-in debt is largely a post-crisis innovation that was “introduced” by bail-in regulation. We

now show that if liquidation values are sufficiently high, the bank can find it optimal to use only

standard debt.

Proposition 6. Standard debt, R`, and total debt, Ru, are both increasing in γ .

Moreover, suppose that R` fH(R`)≤ (λ−1)(1−b)
b+λ (1−b−γ) .

24 Then, there exists γ ∈ [0,1−b] such that:

(a) If γ > γ , then there is no bail-in debt (R` = Ru).

(b) If γ < γ , then higher γ decreases bail-in debt Ru−R`

Proposition 6 shows that higher liquidation values always lead the bank to issue more standard

debt and more total debt. The intuition comes from equation (12): the marginal liquidated bank has

Λ1(R`)> 1, meaning its return R` signaled lower effort was exerted. An increase in R` slackens

incentive compatiblity by encouraging higher effort, which allows the bank to issue more total debt

Ru. An increase in γ reduces the cost of liquidations, and leads the bank to increase R` and Ru.

The second part of the proposition then tells us that as long as R` fH(R`) is not too large, the

increase in standard debt increases total debt but crowds out bail-in debt. Intuitively, the upper

bound on R` fH(R`) implies that the marginal incentive effect of an increase in R` is not so large

that it allows a more than one-for-one increase in Ru. If the condition is violated, then both standard

and bail-in debt increase γ .

Proposition 6 helps shed light on why banks didn’t make use of bail-in debt prior to the 2008

crisis. Small banks perceive a higher γ than that of a social planner that internalizes the fire sale

(Section 4). Moreover, expectation of bailouts would increase recovery values both directly by

protecting creditors (debt guarantees such as TLGP) and indirectly by stabilizing resale markets

24Note that we know that λ ≥ E[R|e0 = H], and so we can bound the RHS away from zero.

20



(asset purchases such as TARP). Resale market stabilization in particular can help explain why even

smaller banks, which may not have expected direct bailouts, would nevertheless not use bail-in debt.

3.4 Nonfinancial Firms and Bankruptcy

Although our model is framed in terms of banks, our optimal contracting framework could also

be applied to nonfinancial corporates. This suggests that nonfinancial corporates might also wish

to use bail-in debt. One interpretation in this spirit can be provided in the context of bankruptcy.

Chapter 7 of the US Bankruptcy Code provides for liquidation, while Chapter 11 provides for

reorganization and debt restructuring process. Chapter 11 reorganization requires that creditors in

impaired classes should either have voted to accept the plan or be no worse off than in Chapter

7 liquidation (11 U.S.C. §1129).25 Impaired classes can push for liquidation under Chapter 7, or

can accept concessions such as the bail-in haircuts of our model in a reorganization plan. It is well

known that different creditors have different incentives in the renegotiation process (e.g., Bolton

and Scharfstein 1996). Senior secured creditors often favor liquidation to avoid further impairment,

while junior unsecured creditors often prefer reorganization to capitalize on convexity. Moreover,

dispersing (secured senior) claims over many creditors can lead to disorderly collateral seizures and

hold out problems that inhibit reorganization, whereas concentrating claims can mitigate hold out

problems. One interpretation of our model is that standard debt parallels dispersed senior secured

claims that promote Chapter 7, and bail-in debt parallels concentrated junior unsecured claims that

promote Chapter 11.26

One important concern is that Chapter 11 may be imperfectly designed for banks, in part

because the automatic stay might disrupt liquidity services from short-term debt (French et al. 2010).

Reflecting this, the US Treasury Department has adopted a proposal for a Chapter 14 bankruptcy

process, with the aim of creating a bankruptcy process tailored to banks (Scott and Taylor 2012,

25This mirrors the no-creditor-worse-off condition of bail-in regimes, see Section 4.2.
26Drawing on this analogy, our normative results in Section 4 could also be viewed as rationalizing intervention

in the non-financial corporate bankruptcy process, for example requiring greater issuance of easier to resolve junior
unsecured debt. Relatedly, see Antill and Clayton (2021) for a related analysis of optimal intervention in the insolvency
process for nonfinancials.
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US Department of Treasury 2018). Interestingly, our model suggests that difficulties of resolving

banks under Chapter 11 results from banks’ deliberate capital structure decisions rather than a

shortcoming of the Chapter 11 process, and that exemption from the automatic stay may be a

desirable means of promoting liquidation. However, our normative results in Section 4 suggest a

role for the government to require greater use of bail-in debt even under a Chapter 14 process.

In practice, Chapter 11 reorganization is common for distressed large nonfinancials and

conversion to Chapter 7 liquidation is relatively uncommon (Wruck 1990, Bernstein et al. 2019,

Antill 2022). In addition, nonfinancials often have lower leverage (lower Ru), while financials

often use very short maturity contracts (higher R`) such as repurchase agreements that are exempt

from the automatic stay (Gorton and Metrick 2012).27 One explanation for why nonfinancials

may make themselves fairly resolvable and have lower leverage is that they may have fairly high

average liquidation discounts (Proposition 6). In this direction, Antill (2022) shows in a sample

excluding acquisitions that switching from reorganization to liquidation in a given bankruptcy

reduces expected creditor recovery across all debt claims by 42 cents on the dollar.28 Financials

might expect higher recovery values in part due to expectations of fiscal support during crises (moral

hazard), and so undertake higher leverage and lower resolvability.

4 Optimal Policy

In this section, we study optimal policy. We do so in the context of the fire sale externality outlined

in Section 2.6, with fire sales being a common motivation for studying government intervention in

regulation and bailouts. The planner of our model has a complete set of regulatory wedges, and so

can incentivize the bank to adopt any feasible capital structure, for example requiring issuance of

outside equity as a loss absorbing instrument. Nevertheless, we show that the social planner finds it

27For example, the Flow of Funds (B.103) suggests that the debt-to-equity of nonfinancial corporates has been in the
20-40% range over the past decade, whereas capital requirements for systemically important financial institutions are in
the range of 20% (i.e. a debt-equity ratio well above one).

28Relatedly, Bernstein et al. (2019) provides evidence that firm liquidation persistently reduces the utilization of the
firm’s real estate assets.
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optimal for banks to write contracts that combine standard and bail-in debt, so that bail-in debt is

the socially optimal loss absorbing instrument. Relative to private banks, the planner prefers greater

use of bail-in debt to mitigate the fire sale. We use our results to shed further light on the optimal

design of bail-in regimes.

4.1 Social Optimum

The social planner possesses a complete set of Pigouvian taxes (wedges) τ on the contract terms

C of banks. Wedges are fully state-contingent.29 Wedge revenues are remitted lump-sum to

banks at date 0, so the project scale of banks can be written as Y0 = A0 + I0 +T ∗− τC , where

T ∗ = τC ∗ is equilibrium revenue collected and remitted. We have adopted inner product notation

to simplify exposition, where for example τLL = E[τ(R1)L(R1)|e0 = H]. Possessing a complete set

of Pigouvian wedges, the planner can incentivize banks to write any feasible contract (satisfying

Definition 1) through appropriate choice of wedges τ . We solve directly for the optimal contract C

chosen by the social planner, rather than its decentralization τ .

The social welfare function of the planner is bank welfare (9), that is a welfare weight of 0

is assigned to arbitrageurs. In Appendix B.1, we show that the qualitative properties of the social

optimum are the same even with positive welfare weights on arbitrageurs.30 The planner’s problem

is to choose a feasible contract C to maximize social welfare, internalizing the equilibrium pricing

relationship (11).

In principle, the planner can choose a contract of any feasible form, even if that contractual

form differs from that chosen privately by banks. For example, the planner might prefer banks to

choose a contract featuring outside equity. The following result characterizes the socially optimal

contract.

29Note that the planner’s problem also satisfies Lemma 2, and so we directly use the same reduction of the contract
as we did for private banks.

30In particular, fire sale spillover term in equation (14) is still positive but is lower in magnitude due to arbitrageur
surplus from liquidations. To achieve Pareto efficiency, the social optimum combines a reduction in standard debt with
a lump sum transfer from banks to arbitrageurs at date 0 to compensate them for losses on purchases.
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Proposition 7. A socially optimal bank contract has a liability structure

L(R1) =


(1−b)R`Y0, R1 ≤ R∗`

(1−b)R1Y0, R∗` ≤ R1 ≤ R∗u

(1−b)R∗uY0, R∗u ≤ R1

The threshhold R∗` is given by

µb(Λ1(R∗`)−1) = b+λ ((1−b)− γ)+ λσγ︸︷︷︸
Fire Sale Spillover. ≥ 0

(14)

while the threshold R∗u is given by equation (13).

Therefore, the socially optimal contract can be implemented with a combination of standard

and bail-in debt. Under an analogous condition to Proposition 6, the social optimum features less

standard debt (R∗` < R`) and more bail-in debt (R∗u−R∗` > Ru−R`) than the private optimum.

Even though the social planner has the ability to write any feasible contract C , such as requiring

some issuance of outside equity, Proposition 7 shows that the social planner finds it optimal to write

a contract of the same structural form as private banks chose. That is to say, the socially optimal

contract, like the privately optimal contract, can be implemented with a combination of standard and

bail-in debt. The planner thus agrees with the bank that the optimal capital structure should make

use of these two debt instruments, and not other instruments such as outside equity. We denote R∗`

and R∗u to be the planner’s choices.

Even though the planner uses the same debt instruments as the bank, the fire sale spillover

results in an additional social cost of liquidation in the planner’s optimality condition for R∗` : the

project liquidations of one bank increase the resource loss to all other banks that liquidate projects

at the same depressed prices. This liquidation cost term represents the only difference between the

private and social optimality conditions in equations (12) and (14), respectively. By contrast, there

is no additional wedge in the determination of R∗u, since a greater total debt level arising from more
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bail-in debt does not change total liquidations. Relative to private banks, the planner on the margin

prefers lower issuance of standard debt but the same issuance of total debt, that is an increase in

bail-in debt.

The constant elasticity σ implies that the social planner perceives an effective liquidation value

of (1−σ)γ , rather than just γ . That is, the planner’s solution is as-if the liquidation price was lower

than it truly is. Proposition 6 tells us that the planner’s solution has less standard debt and less total

debt than the bank’s private optimum. Proposition 6 also tells us that the planner uses more bail-in

debt if incentive effects are not too strong.

4.2 Ex Post (Bail-in) Resolution as Optimal Policy

In our model, bail-in debt involves pre-specified (ex ante) contractual write-downs. Bail-ins are

also implemented in practice via a resolution authority that imposes write downs ex post. Both

forms of authority are used in practice, with the US emphasizing ex-post resolution and the EU

being more acommodating of contractual recapitalization.31 In this section, we show that the social

optimum can also be implemented using an ex-post resolution authority. In Section 4.4, we discuss

conditions under which this duality fails.

We define the resolution authority as follows. The resolution authority has discretion at date

1 to impose write downs on liability contracts that are designated “bail-inable,” but is prohibited

from imposing write downs on contracts that are designated “non-bail-inable.” The objective of

the ex-post bail-in authority is, at the level of the individual bank (i.e. taking equilibrium prices as

given), to maximize total recovery value to creditors, subject to write downs being Pareto efficient.

In the implementation that follows, it will be necessary to allow for debt seniority.

Corollary 8. The social optimum can be implemented using macroprudential policy and a resolution

31In the US, banks are required to maintain a certain level of total loss-absorbing capital (TLAC), principally
long-term debt and equity, to safeguard the bank against poor returns. Debt used to satisfy TLAC requirements must
be plain-vanilla, implying a fixed face value, while debt with contractual contingencies cannot generally be used to
satisfy TLAC requirements. In particular, “eligible external LTD [is] prohibited from including contractual triggers for
conversion into or exchange for equity.” 82 FR 8266. See Avdjiev et al. (2017) for background on the European case.
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authority. The social planner imposes an ex ante requirement for the bank to issue R∗` in non-

bail-inable senior debt and R∗u−R∗` in bail-inable junior debt, where R∗` and R∗u are given as in

Proposition 7. The resolution authority implements the write downs of Proposition 7 ex post.

Corollary 8 provides an implementation of the social optimum using a resolution authority. If

R1 < R∗` , the resolution authority lacks capability of imposing sufficient write downs, and so cannot

intervene. If R∗` ≤ R1 ≤ R∗u, the resolution authority writes down bail-inable debt to R1−R∗` . This

maximizes creditor recovery and is Pareto efficient, since bail-inable debt is junior. If R1 > R∗u,

the resolution authority’s objective is achieved without write downs. Thus the same outcome is

achieved. Finally, note the planner must impose restrictions on non-bail-inable debt ex ante, for the

same reason as under the contractual implementation.32

The implementation of optimal policy in Corollary 8 is consistent with the design of bail-in

regimes in practice, for example Title II. Bail-in regimes subordinate bail-in(able) (long-term) debt

to standard (short-term) debt, that is standard debt enjoys absolute priority in bankruptcy, liquidation,

and resolution.33 Moreover, the objective of Pareto efficiency is consistent with the No Creditor

Worse Off principle of bank resolution (BRRD Article 73).

4.3 Composition of TLAC and Need for Bail-in Regulation

In the environment of Proposition 7, the planner disagrees with the bank on the margin only over the

composition but not the total level of debt. The planner also agrees with the bank that bail-in debt is

preferable to outside equity. Therefore, the planner could implement the optimum by placing a tax

on standard debt, and allowing the bank to freely choose between outside equity and bail-in debt.

The bank then chooses to use bail-in debt rather than outside equity, achieving the social optimum.

32In our model, bank fundamentals R1 are common knowledge, so there is no informational time consistency
problem as in Walther and White (2020).

33In practice, short-term debt priority has three implementations. The first is contractual: bail-in debt is junior to
short-term debt. The second is organizational: short-term debt is issued at the operating subsidiary, whereas long-term
debt is issued at the top-tier holding company. The third is legal: national bankruptcy law confers priority to short-
term debt in the case of banks. The US induces seniority through organizational form, and we could implement the
US approach under Corollary 8 by assuming that bail-inable debt is held at a resolvable holding company, whereas
non-bail-inable is held at a non-resolvable operating subsidiary.
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The social planner thus needs to specify minimum total loss-absorbing capacity (TLAC) but not its

composition (where TLAC instruments protect a bank from liquidation, for example bail-in debt

and equity). In this subsection, we develop two extensions that highlight the need for the planner to

specify minimum bail-in debt and minimum (inside) equity separately. Each extension represents

the minimal required departure from the baseline model.

Need for Minimum Bail-in Debt. We extend the model to allow for aggregate uncertainty over

the magnitude of the fire sale.34 Formally, we have a stochastic liquidation price elasticity σ ∈ Σ (a

finite set), with aggregate probabilities π(σ). The model is otherwise unchanged.35 We obtain the

following result.

Proposition 9. The socially optimal contract takes an aggregate-state-contingent form of that in

Proposition 7, where R∗`(σ) decreases in σ and R∗u is constant in σ .

Proposition 9 states that uncertainty over the magnitude of the fire sale, σ , leads to a fixed total stock

of debt but a state-contingent debt composition. Intuitively, the planner prefers fewer liquidations

in more severe crises (higher σ ) and more liquidations in less severe crises. The contract imple-

mentation involves two instruments: standard debt, and bail-in debt with a dual trigger.36 Standard

debt is associated with R∗`(σmax), where σmax = maxΣ. The dual trigger on bail-in debt specifies

the portion R∗u−R∗`(σ) of bail-in debt that can be written down. The portion R∗` −R∗`(σmax) cannot

be written down, and so mimics standard debt ex post.

With aggregate uncertainty, a tax on standard debt only gives the planner control over the

minimum threshold R∗`(σmax), but not separately thresholds in states σ > σmax. The fire sale implies,

however, that the planner prefers on the margin less standard debt in every state σ > 0. This means

the planner also has to regulate the dual trigger, i.e., how much of bail-in debt can be resolved based
34For simplicity, we abstract away from aggregate return risk. Appendix B.2 studies the case where aggregate

uncertainty affects the return distribution.
35Note that monotonicity is now σ -adapted.
36This terminology alludes to that of a dual price trigger for a CoCo security (e.g., McDonald 2013), where write

downs or conversions to equity are based on both an idiosyncratic measure (e.g., individual bank stock price) and an
aggregate measure (e.g., aggregate stock market performance).
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on the severity of the crisis. Proposition 9 provides a role for explicit regulation of bail-in debt

contracts, and helps explain post-crisis requirements for minimum holdings of (long-term) bail-in

debt in the top tier bank holding company (82 FR 8266).

Need for Minimum Equity Requirements. Our model gives no concrete role for minimum

equity capital requirements – that is, maximum Ru – which are common in practice. This results

from the binary effort problem, and can be resolved by making date 0 effort continuous (maintaining

binary date 1 effort for simplicity). Formally, let e0 ∈ [0,1], with f (R1|e0) = e0 fH(R1)+ (1−

e0) fL(R1) and a private benefit 1
2B0(1−e2

0) to shirking. Our baseline model is obtained by imposing

the restriction e0 ∈ {0,1}, with e0 = 1 being high effort. In the proof of Proposition 10, we show

that date 0 incentive compatibility is given by

∫
c(R1)

(
1−Λ1(R1)

)
fH(R1)dR1 = e0B0Y0,

where Λ1(R1) =
fL(R1)
fH(R1)

as in the baseline model. Incentive compatibility here defines the effort

level e0 that is chosen by the bank as a function of its capital structure. As in the baseline model,

liquidations in low-return states and cash flow transfers in intermediate states promote higher effort

e0, while cash flow transfers in high return states discourage effort.37 We obtain the following result.

Proposition 10. With continuous effort, the privately and socially optimal contracts can be imple-

mented by combinations of standard and bail-in debt. Decentralizing the social optimum requires a

positive tax on total debt.

In the baseline model with binary effort choice, Ru discouraged high effort and tightened

incentive compatibility. With continuous effort, higher Ru lowers e0 in a continuous sense. Lower

e0 increases the probability that the bank finds itself with R1 ≤ R`, leading to larger fire sales. Small

37Analogous to the baseline model, we assume that a commitment to higher effort would be desirable. As in the
baseline model, this implies a positive Lagrange multiplier on incentive compatiblity, µ > 0. As in the baseline model,
violation of this condition would either lead to a corner solution in effort or lead to contracts that punished the bank for
high returns.
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banks do not internalize this effect and so over-pledge total debt and under-provide effort relative to

the social optimum. This gives the planner a role to restrict total debt issuance, that is to implement

a form of minimum (inside) equity capital requirement.

4.4 Ex Ante vs Ex Post: Commitment vs Flexibility

Our baseline model features an equivalence between ex ante contractual write-downs and ex post

bail-ins via a resolution authority. Both of these institutional setups are used in practice, making

it important to understand when one method is preferable to the other. We extend the model to

capture a particularly relevant practical dimension: As a crisis unfolds, it is difficult to assess

and, in particular, verify its severity in real-time. A trade-off emerges between ex ante contractual

write-downs and ex post resolution: A resolution authority with flexibility to resolve more banks in

severe crises is also tempted to resolve more banks in normal times to prevent costly liquidations.

We first show that absent a mechanism to control the resolution authority, the planner can do

no better than an ex ante contractual approach. However, ex post resolution can improve on ex

ante contractual write-downs if the resolution authority is designed with an appropriate incentive

mechanism. The optimal incentive mechanism has similarities to the structure of Title II.

Consider the aggregate risk environment of Section 4.3 and suppose that σ ∈ Σ is non-

contractible.38 An ex ante contract can only specify R` and Ru that are invariant to σ , resulting

in too few liquidations when σ is small (“normal times”) and too many when σ is large (“crisis

times”).39 Suppose then that we delegate to a utilitarian resolution authority the ability to choose

R` ex post at date 1 from a pre-specified set R`. Formally, the resolution authority chooses R` to

maximize U(σ ,R`) = (γ(σ ,R`)− 1)Ω(R`), that is to minimize the total costs of liquidations. It

follows immediately that U is decreasing in R`, since more liquidations both increase the number of

liquidated banks, Ω, and reduce the fire sale price, γ . Therefore, the resolution authority selects

38If crisis severity also has a verifiable component, we can think of our analysis as being about deviations around
that verifiable component.

39It is interesting to note that the ex ante optimal contract still involves a combination of standard and bail-in debt,
since these instruments are still optimal incentive devices. The cost of standard debt is the average cost across aggregate
states, that is E[γ] for the bank and E[(1−σ)γ] for the social planner.
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R`(σ) = inf R` for all σ . Intuitively, the utilitarian resolution authority always wants to prevent

as many costly liquidations as possible, and so always chooses to resolve as many banks as it

can. Absent further incentives, an ex post resolution authority cannot improve on an ex ante

implementation under commitment. This suggests that an ex ante approach has an advantage over

the ex post approach.40

We now propose a Pigouvian method of implementing the efficient rule R∗`(σ) of Proposition 9

using an ex post resolution authority. In particular, the key friction we must overcome is the incentive

outlined above for too many resolutions. We allow the planner to assign a penalty (or transfer) T to

the resolution authority based on its chosen R`, so that the resolution authority achieves total utility

U(σ ,R`)−T . We provide plausible practical implementations of T after presenting our result. A

mechanism in our model operates as follows: After the resolution authority observes σ , it can

report that it observed any σ̂ ∈ Σ. It is then assigned a pair (R`(σ̂),T (σ̂)) based on this report. The

mechanism must be incentive compatible, i.e., a resolution authority must find it optimal to report

σ̂ = σ .41 Formally, this requires U(σ ,R`(σ))−T (σ)≥U(σ ,R`(σ̂))−T (σ̂) for all σ , σ̂ ∈ Σ. We

now show that there is always an incentive compatible mechanism that implements the efficient

allocation of Proposition 9, and afterwards discuss the form of the mechanism.

Proposition 11. There is an incentive compatible mechanism that implements the allocation R∗`(σ)

of Proposition 9, where T (σ) increases in σ .

Proposition 11 shows that an incentive compatible mechanism for implementing the efficient

liquidation rule with a resolution authority does in fact exist. To make the mechanism concrete,

we discuss it in terms of a stylized example: let Σ = {0,σ}, that is there is a normal state without

fire sales and a crisis state with fire sales. Define ∆Ω = Ω(R∗`(0))−Ω(R∗`(σ)) as the difference

40It is helpful to draw parallels to the commitment versus flexibility literature in the contexts of fiscal and monetary
policy. Athey et al. (2005) and Amador et al. (2006) show that threshold rules are optimal in environments with money
burning, which mirrors our simple ex ante approach. Several papers (Beshears et al. 2022, Clayton and Schaab 2022,
Halac and Yared 2022) study mechanisms with transfers or penalties in a similar method to our Pigouvian approach.

41As usual, we exploit the revelation principle and focus on direct mechanisms where the resolution authority
truthfully reports its type.
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in liquidations that occur in the normal and crisis states. The proof of Proposition 11 shows

that the smallest possible punishments that maintain incentive compatibility are T (σ) = 0 and

T (σ) = (1− γ)∆Ω > 0, where γ is the liquidation price absent fire sales. Intuitively, the resolution

authority can always choose R∗`(σ) without incurring a penalty, but must incur a penalty T (σ) to

resolve more banks. The level of the penalty in a crisis is set to discourage the resolution authority

in normal times from behaving as if there was a crisis. Intuitively, this happens because during

a crisis, deep fire sales increase the incentive for the resolution authority to resolve more banks.

Thus the binding temptation is for the resolution authority to resolve too many banks in normal

times.42 The size of the penalty is equal to the marginal cost of liquidation, 1− γ , times the number

of liquidations prevented by resolving more banks, ∆Ω.

Proposition 11 implies that a resolution authority approach can be preferable to an ex ante

contractual approach provided that an appropriate incentive mechanism is established to control its

behavior. The incentive mechanism allows the resolution authority to respond to non-contractible

information about crisis severity while curbing its incentives to over-respond to less severe crises.

An important practical question is how to implement this mechanism. Although mechanisms

such as monetary incentives and threats of firing are possible, we suggest one novel and plausible

implementation that exploits the structure of the resolution framework. The implementation involves

pairing larger-scale bail-ins with costly bailouts.43 In particular, Title II of the Dodd-Frank Act

provides for resolution of the top tier bank holding company while operating subsidiaries continue

operations unimpeded. One implementation of the mechanism of Proposition 11 is to divide loss-

absorbing capital between the top tier holding company and operating subsidiaries. The ex post

resolution authority is given full flexibility to resolve the top tier holding company, but resolution

of operating subsidiaries requires a partial bailout of the operating subsidiaries. This mechanism

defines a contractible event associated with larger bail-ins – the resolution of an operating subsidiary

42This is a typical direction of binding constraints result: the high type (here low σ ) must be deterred from imitating
the low type (here high σ ).

43Our proposal of using bailouts as an incentive mechanism is related to Philippon and Wang (2022), but takes a
different form and context. They propose awarding higher bailouts to better performing banks to incentivize lower
ex ante risk taking, whereas our focus is on bailouts as an incentive mechanism for the resolution authority’s ex post
resolution choices.
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– and assigns a punishment based on that contractible event – need to employ costly bailouts.44

4.5 Bail-ins versus Bailouts

One of the stated goals of bail-in regimes is to replace bailouts. A strength of our framework is

that we can leverage it to examine important policy questions such as this one. In this subsection,

we allow the planner to engage in bailouts and show that under commitment the planner prefers to

commit to bail-ins rather than bailouts. This result provides a stylized benchmark that sheds light on

the policy goal of replacing bailouts with bail-ins. In practice, commitment is a strong assumption,

and we discuss time consistency at the end of this subsection and in Appendix B.9.

We take as our starting point the model of Section 4.1 and allow the planner to bail out insolvent

banks under commitment. The smallest bailout that recapitalizes an insolvent bank with return

R1 is T (R1) = L(R1)− (1−b)R1Y0, which allows the bank to repay its liabilities and maintain its

minimum agency rent. Bailout funds are raised from taxpayers at date 1. Taxpayers have utility

u0(cT
0 )+u1(cT

1 ), where cT
0 = AT

0 +T0−B0 and cT
1 = AT

0 +B0−E[T (R1)]. B0 is taxpayer savings.

T0 is a “bailout fund,” i.e., a transfer from banks to households at date 0 to compensate for ex

post bailouts. A bailout fund is necessary to achieve a Pareto improvement if bailouts are used in

equilibrium, but is not needed if bailouts do not occur.

We study the social planning problem of choosing a feasible contract C and bailout rules

(T0,T1) to maximize social welfare, with a Pareto weight ωT placed on taxpayers. The problem is

otherwise the same as in Section 4. We obtain the following result.

Proposition 12. In the model with committed bailouts, the socially optimal contract of Proposition

7, with no bailouts (T0 = T1 = 0), is Pareto efficient.

Proposition 12 shows that a planner achieves Pareto efficiency in the model with committed

bailouts by exclusively relying on bail-ins to recapitalize insolvent banks. To understand why,
44One simple formalization of this mechanism is to assume that a bailout of size T1 at date 1 has a political or

deadweight cost κ > 0 per unit. This means the total deadweight cost of bailouts is κT1. As a result, implementing the
minimal punishments above would mean setting T1(0) = 0, that is no bailouts, and setting T1(σ) = (1−γ)∆Ω

κ
.

32



suppose the planner bailed out the marginal insolvent bank, R1 ↑ R∗` . There are two effects of a

bailout. First, the insolvency threshold is lowered, that is R∗` effectively falls. But under the socially

optimal contract of Proposition 7, the marginal cost of liquidation costs is perfectly balanced against

the marginal benefit of incentive provision, meaning a reduction in R∗` has zero net welfare effect.

Second, a bailout also transfers resources from taxpayers to banks. The marginal social benefit of

the resource transfer is the value of relaxing the participation constraint, λ . The marginal social

cost of the resource transfer is the burden to taxpayers, ωT u′1(c
T
1 ). Thus selecting the Pareto weight

ωT = λ

u′1(c
T
1 )

, from taxpayer optimization over savings B0 we have λ = ωT u′1(c
T
1 ) = ωT u′0(c

T
0 ).

Thus the net welfare gain from the resource transfer is also zero, and there is no welfare gain from

bailing out the marginal insolvent bank. Thus we have found a Pareto weight ωT such that the

contract of Proposition 7, with no bailouts, maximizes the planner’s welfare criterion, and so we

have found a Pareto efficient allocation without bailouts.45

It is well known that when debt contracts are non-contingent by assumption, bailouts can be

Pareto efficient because they insert contingencies into otherwise non-contingent contracts (Bianchi

2016, Jeanne and Korinek 2020). Our model endogenously generates not only non-contingent

standard debt, but also contingent bail-in debt. Thus the planner can achieve the same state-

contingencies with bail-in debt as it could with bailouts. As a result under full commitment, the

planner can achieve an efficient outcome by using more bail-in debt, rather than by bailing out

standard debt.

In Appendix B.9, we study bailouts in the absence of commitment under two special cases of

collective moral hazard and finite fiscal capacity. We show the two cases have different implications

for whether bailouts occur, but that in both cases the possibility of bailouts either reduces or does

not alter welfare. With collective moral hazard, fixed costs of bailouts imply all banks get bailed

out if there are sufficiently many bank failures. The planner restricts standard debt so that no

bailouts occur. With finite fiscal capacity, higher standard debt exhausts fiscal capacity faster. Thus

45Bailouts can be optimal in our model for insurance reasons, as in Dewatripont and Tirole (2018), Farhi and Tirole
(2021), and Keister and Mitkov (2021). In our model, this can happen in reduced form by assuming taxpayers are
borrowing constraint, B≥ 0, so that u′0(c

T
0 )≥ u′0(c

T
1 ).
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counterintuitively, the planner increases use of standard debt to exhaust fiscal capacity and achieve

the efficient liquidation rule, which results in some bailouts.

4.6 Discussion and Additional Extensions

We provide additional discussion of how our model can speak to too-big-to-fail institutions, as well

as its connection to demand-based (safety premia) theories of standard debt.

Too-Big-To-Fail. Our model assumes all banks are small, but in practice bail-in regulation is

often tailored to “too-big-to-fail” banks. Failure of a single large bank could generate a large

enough fire sale that the planner would prefer to avoid liquidation. In our model, this would mean

R` ≤ R.46 Such regulation is privately costly because it reduces effort incentives, forcing lower

debt and smaller project scale. However, this cost arises because we have modeled liquidation as

an all-or-nothing decision. We now argue that partial liquidation of large banks can be desirable

to mitigate externalities while providing incentives. We connect this idea to proposals for a good

bank/bad bank approach to resolution.

We model N ≥ 1 ex ante identical large banks (in place of small banks). A large bank is an

investment family (“holding company”) consisting of 1
N managers (“subsidiaries”), each of whom

can undertake a project of the form in Section 2. Each holding company divides inside equity,

1
N A0, equally among its subsidiaries, and then coordinates external capital structure decisions for

the family (i.e., the contract of each subsidiary).47 We treat x as subsidiary cash flows pledged

to external investors and c as cash flows pledged to the family.48 Each manager independently

46This is a more extreme version of current regulations that impose surcharges in capital requirements for systemically
important financial institutions.

47For simplicity, our model abstracts away from the possibility that contracts are interconnected (that is, C is only
adapted to the individual subsidiary’s R1) – for example a threat to liquidate other subsidiaries as well if one subsidiary
performs badly. This is consistent with the idea that the manager must act to maximize payoff to her subsidiary’s equity
holders, and not equity holders of other subsidiaries.

48In our simple framework, there are two equivalent methods this could be achieved. One is that the subsidiary
directly holds external bail-in debt. The other is that the holding company holds bail-in debt in the subsidiary, and then
issues the same instrument externally. Thus a loss at the subsidiary is indirectly passed on to external investors. We
treat these two methods as equivalent in the sense that both generate the same division of final payoffs xt and ct among
outside investors and the family.
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operates her subsidiary to maximize the payoff of her project to her family. Incentive compatibility,

monotonicity, and limited liability are specified at the subsidiary level. For simplicity, suppose

there are no fire sales. It is easy to see in this case that every large bank chooses the same privately

optimal contract as Proposition 3.49 The privately optimal contract therefore results in a partial

liquidation of each large bank, where subsidiaries with R1 ≤ R` are liquidated.

This simple extension highlights how our model can be used to speak to too-big-to-fail

institutions. Because effort choice is at the subsidiary level and the holding company coordinates

capital structure decisions, partial liquidations targeting poorly performing subsidiaries replace

all-or-nothing liquidation rules. The importance of subsidiary-level (partial) liquidations highlights

the desirability of not only a holding company / operating subsidiary company structure, which

allows individual units of the group to fail in isolation, but also a novel rationale for clean holding

company requirements: liquidations occur at the subsidiary level, so standard debt is held at the

subsidiary level. This also rationalizes a good bank/bad bank approach to resolution. Under this

implementation, the best performing assets or subsidiaries (with R1 ≥ R`) of the large bank would

be separated into the “good” bank and reorganized. The worst performing assets or subisidiaries

(with R1 < R`) would be placed into the “bad” bank, and liquidated. The size of the bad bank

increases in R`, resulting in larger partial liquidations.

Relation to Demand-Based Explanations. Our model provides an incentive-based explanation

for standard debt. Another important explanation is demand-based: investors assign a special

preference to safe debt, which makes safe debt cheaper to issue (Bolton and Oehmke 2019, Walther

and White 2020). Demand-based explanations are by no means mutually exclusive with ours, but it

is important to highlight some of the differences. We then discuss how a combination of our theory

and a demand-based one can provide a more complete perspective on bank capital structure choices.

Our model uses a single contracting friction, repeated unobservable effort, to rationalize the

joint existence of standard and bail-in debt. A pure demand-based (safety premium) story has

49If there were fire sales, each large bank would internalize only a fraction 1
N of the fire sale cost, generating a role

for the planner to intervene and impose the contract of Proposition 7.
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two important points to reconcile. First, a safety premium means that costly liquidations are also

inefficient ex ante. Banks thus have strong incentives to write hedging contracts to protect standard

debt and prevent liquidation. Yet, the costly insolvencies we see in practice are a basis for introducing

bail-in regimes. Both Bolton and Oehmke (2019) and Walther and White (2020) reconcile this in

part by assuming that banks are unable to write such hedging contracts (incomplete markets).50 Our

model predicts that banks do not hedge standard debt, that is banks use noncontingent contracts even

though markets are complete. Our model thus provides a unified explanation for why we observe

costly liquidations in practice. Second, a pure safety premium story implies Modigliani-Miller holds

for the residual capital structure of the bank, giving no clear role for bail-in debt per se. Both Bolton

and Oehmke (2019) and Walther and White (2020) incorporate one period of unobservable effort to

give a clear role for bail-in debt over equity. Our model unifies the explanation for the desirability of

both standard debt and bail-in debt over equity from repeated unobservable effort. Our model also

highlights that total debt discourages effort in a continuous sense, providing a unified perspective on

the role of minimum equity capital requirements in conjunction with standard debt and minimum

bail-in debt.

Incorporating a special preference for safe debt into our model can offer a more complete

perspective on bank capital structure. For example, our model provides no role for deposit insurance,

which impairs the incentive benefits of standard debt. A safety premium could motivate deposit

insurance (Dewatripont and Tirole 2018, Farhi and Tirole 2021). Appendix B.8 provides one simple

extension in which a planner protects a class of insured deposits to preserve their safety premium.51

If liquidations are not too costly, the social planner allows banks to issue both insured standard debt

(e.g., retail deposits) and uninsured standard debt (e.g., wholesale funding). Costly liquidations

happen whenever total standard debt exceeds pledgeable income. This rationalizes capital structures

that combine insured and uninsured deposits. It also motivates the common FDIC practice of

50Bolton and Oehmke (2019) also offers an insightful observation that resolution authorities themselves may prevent
hedging across countries “by ring-fencing assets” (p. 2390).

51There is little meaningful difference between public and private insurance in this extension, so we could also view
this as an explanation of secured standard debt, possibly also protected by hedges, and unsecured standard debt, not
protected by hedges.
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resolving small insolvent banks by using either liquidation or merger, both of which could be seen as

a possibly costly reallocation of the bank to the next best user. It can also explain the exemption of

repurchase agreements from the automatic stay: disorderly collateral seizure both protects secured

creditors and promotes liquidation.

Further Extensions. We briefly summarize several additional extensions in the Appendix that

have not yet been discussed. In Appendix B.4, we introduce multiple investment projects and

show that asset-side regulation is a necessary complement to liability-side regulation because asset

composition affects the probability of failure and liquidation. In Appendix B.5, we study the

allocation of bail-in securities among heterogeneous investors and show that retail investors, with

greater exposures to idiosyncratic banks, and institutional investors that experience greater fire sale

spillovers should hold safer (standard debt) claims. In Appendix B.7, we allow standard debt to

command a premium over other instruments, including bail-in debt. This helps rationalize the high

level of standard debt banks employ in practice.

5 Conclusion

We develop a simple and tractable dynamic contracting model in which the privately optimal bank

contract can be implemented with a combination of standard and bail-in debt. Banks privately

under-use bail-in debt in the presence of fire sale externalities from bank failures, motivating the

government to set up a bail-in resolution regime. Bail-ins are a desirable addition to the regulatory

regime because bail-in debt is better suited than (outside) equity to address the incentive problem

that motivated banks to issue standard debt in the first place. Our model sheds light on a number of

normative issues in bank regulation, including TLAC composition, trade-offs between ex ante and

ex post approach, and interaction with bailouts.

There are a few interesting possible directions in which our framework could be extended.

First, our model had two periods of effort choice and assumed high effort choice was always exerted.
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We conjecture that the key insights of our model would arise in a longer horizon model: liquidations

would be costly but strong incentive devices, while maximal cash flow transfers (“bail-ins”) would

be less costly but weaker incentive devices. It is possible that pledging contracts that induce

future shirking (low effort) after low returns could be an optimal form of money burning, similar

to liquidation, by reducing continuation agency rents. The policy implications of such a model

would be an interesting avenue for future research. Second, our model assumes that the banker is

not severable from the bank, that is the banker cannot be fired without also liquidating the bank.

Standard debt thus transfers control rights to investors, whose best option is liquidation. If the

banker were severable but firings were costly, we conjecture the government might prefer to use

costly firings and bail-ins to provide high-powered incentives, rather than liquidations. Another

interesting avenue for future research would be to consider socially optimal punishment schemes in

this context.
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R1

Pledgeable Income ((1 − b)R1Y0)

Face Value of Liabilities (L(R1))

R` Ru

Standard debt

Bail-in debt

Bankruptcy/Liquidation Write Down No Write Down

Figure 1: This figure provides an illustration for the privately optimal contract. Up to a threshold Rl ,
bank liabilities are constant and exceed pledgeable income, leading to liquidations (“standard debt”).
Between Rl and Ru, the face value of liabilities is written down to coincide with pledgeable income
(“bail-in” or “write down”). Above Ru, the face value of liabilities is constant (“bail-in debt”).

.
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Internet Appendix

A Proofs

A.1 Proof of Lemma 2

Consider the problem of the bank. The bank chooses a contract C in order to maximize utility,

E [c(R1)|e0 = H]

subject to (IC-0),

E
[

c(R1)(1−Λ1(R1))

∣∣∣∣e0 = H
]
≥ B0Y0,

to (IC-1),

E
[
(c1(R1)+ c2(R1,R2))(1−Λ2(R2))

∣∣∣∣e1 = H
]
≥ B1R1Y0,

to (P),

Y0−A0 ≤ E [x(R1)|e0 = H] .

and to monotonicity,

R1 ≥ R′1⇒ x(R1)≥ x(R′)

R2 ≥ R′2⇒ x2(R1,R′2)≥ x2(R1,R′2).

Throughout here, we have adopted defintions,

x(R1) = α1(R1)γR1Y0 +(1−α1(R1))E
[

x1(R1)+ x2(R1,R2)

]
.

c(R1) = (1−α1(R1))(R1Y0− x(R1))

A.1



Consider now that utility, (IC-0), (M1), and (P) depend only on (c,x) and not on the distributions

(ct ,xt). Therefore, we can define a set of equivalent date 1 expected contracts as contracts C (α,c,x)

as the set of contracts that yield the same (α,c,x) through different payoff splits (ct ,xt). Take a

contract C (α,c,x) that satisfies (IC-0), (P), and (M1).

We now look to characterize whether a contract C ∈ C (α,c,x) can be made to satisfy (IC-1)

and (M2) with a payoff split (ct ,xt). Formally, we represent this problem as maximizing slack in

incentive compatibility,

S(R1) = E
[
(c1(R1)+ c2(R1,R2))(1−Λ2(R2))

∣∣∣∣e1 = H
]
−B1R1Y0

subject to the constraints

E[c1(R1)+ c2(R1,R2)|e1 = H] = c(R1)

R2 ≥ R′2⇒ x2(R1,R′2)≥ x2(R1,R′2).

E[x1(R1)+ x2(R1,R2)|e1 = H] = x(R1)

along with the resource constraint. The contract C is feasible iff S(R1) ≥ 0 for all R1. This

problem is the dual of a standard Innes (1990) type problem with a binary effort choice, MLRP, and

monotonicity, and hence we know the solution is a debt contract,

x1(R1)+ x2(R1,R2) =

 R2R1Y0, R2 ≤ Ru
2(R1)

Ru
2(R1)R1Y0, R2 > Ru

2(R1)

Thus, it remains only to check that S(R1)≥ 0 and the contract is indeed incentive compatible. Given

the debt contract, we have

S(R1) =
∫ R

Ru
2(R1)

[
R2−Ru

2(R1)

]
R1Y0(1−Λ2(R2)) f2,H(R2)dR2−B1R1Y0,
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which is nonnegative if

∫ R

Ru
2(R1)

[
R2−Ru

2(R1)

]
(1−Λ2(R2)) f2,H(R2)dR2 ≥ B1.

Thus, define Ru
2 as the higest value of Ru

2(R1) that satisfies the above equation, and note that it does

not depend on R1. Thus, IC is satisfied only if Ru
2(R1) ≤ Ru

2. This equivalently means that the

contract can be made date 1 incentive compatibility under a monotone continuation contract only if

c(R1)≥
∫ R

Ru
2

[R2−Ru
2]R1Y0 f2,H(R2)dR2 = bR1Y0

where we have defined b≡ ∫ R
Ru

2
[R2−Ru

2] fH(R2)dR2. This concludes the proof.

A.2 Proof of Proposition 3

We will represent the problem in the space (α,x,c) and then back out the liability structure L that

implements it.

Exploiting Lemma 2, we represent the program as

maxE [c(R1)|e0 = H]

subject to

E [c(R1)(1−Λ1(R1))|e0 = H]≥ B0Y0

Y0−A = E[x(R1)|e0 = H]

R1 ≥ R′1⇒ x(R1)≥ x(R′1)

c(R1)≥ (1−α(R))bR1Y0

where the last equation is the representation of (IC-1) as a minimum agency rent. Note that we can

drop limited liability due to the pledgeable income constraint (given we already assign c(R1) = 0 in
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liquidation).

Given representation in the investor payoff space, we have

x(R1) = α(R1)γR1Y0 +(1−α(R1))R1Y0− c(R1)

Note that because banks are repaid 0 when α(R1) = 1, it is irrelevant whether we multiply c(R1) by

1−α(R1). Given this characterization, investor voluntary participation can be rewritten as

Y0−A = E [αγR1Y0 +(1−α)R1Y0− c|e = H] .

We begin by studying the optimization problem not subject to monotonicity in x, and show

that it generates a non-monotone contract. The Lagrangian of this relaxed problem is

L =E [c|e0 = H]+µ [E [c(1−Λ1)|e0 = H]−BY0]

+λ [E [αγR1Y0 +(1−α)R1Y0− c|e0 = H]+A0−Y0]

+E [χ (c− (1−α)bR1Y0) |e0 = H]

+E [ζ ((αγR1Y0 +(1−α)R1Y0− c+ x)) |e0 = H]

where the last line is a limited liability constraint x ≥ −x that we introduce for purely technical

reasons in showing that the optimal contract not subject to monotonicity is in fact non-monotone

(anticipating it will take a live-or-die form). Limited liability for investors will play no role in the

optimal monotone contract. From here, first order condition for bank consumption as

0 = f1,H(R1)+µ(1−Λ1(R1)) f1,H(R1)−λ f1,H(R1)+χ(R1) f1,H(R1)−ζ (R1) f1,H(R1)

= [1−λ +µ(1−Λ1(R1))] f1,H(R1)+χ(R1)−ζ (R1)

By MLRP, there is a threshold R∗ such that χ(R1)> 0 for R1 ≤ R∗ and ζ (R1)> 0 for R1 ≥ R∗. This
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threshold is given by

1−λ +µ (1−Λ1(R∗)) = 0. (A.1)

However, this contract violates monotonicity unless x(R1) is constant for all R1. Therefore, we have

an upper pooling region in the optimal contract, where investor repayment is constant.52

It is worth remarking that monotonicity therefore binds in the optimal contract. We relax the

assumption of monotonicity in Appendix B.3, and show that the optimal contract takes a live-or-die

form (Innes 1990). We interpret the optimal contract as a combination of standard debt, bail-in

debt, and an “insurance” contract that pays off to banks in a high-return states. The limited liability

x prevents writing contracts that deliver arbitrarily large payoffs to the bank at only the possible

highest effort level.

We now characterize the optimal contract using the following strategy. First, we conjecture a

pooling thresholds Ru with corresponding xu ≡ x(Ru), so that x(R1) = xu for all R1 ≥ Ru. The live-

or-die result of the contract not subject to monotonicity implies such a pooling threshold exists.53

We then solve for the optimal contract below Ru, taking as given Ru and xu, subject to a relaxed

monotonicity constraint x(R1)≤ xu ∀R1 ≤ Ru, and verify that the resulting contracting is monotone.

In doing so, we characterize the space of implementable contracts (that satisfy monotonicity).

Finally, we optimize over the choice of Ru and xu.

Conjecture pooling thresholds Ru with liabilities xu. The associated Lagrangian is given by

L =E [c|e0 = H]+µ [E [c(1−Λ1)|e0 = H]−B0Y0]

+λ [E [αγR1Y0 +(1−α)R1Y0− c(R1)|e0 = H]+A0−Y0]

+E [χ (c− (1−α)bR1Y0) |e0 = H]

+E [ν (xu− (αγR1Y0 +(1−α)R1Y0− c)) |e0 = H]

52If L(R1) is constant, then the entire contract is pooled. If R∗1 = R, then the results that follow apply setting Ru = R
to be the pooling threshold.

53Note that this is without loss, since the pooling threshold could be Ru = R if R∗ = R.
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where the final line is the relaxed monotonicity constraint (note that we have now dropped investor

limited liability as a constraint). Taking the derivative in consumption c(R1) for R1 ≤ Ru, we obtain

0 = 1+µ(1−Λ1(R1))−λ +χ(R1)+ν(R1).

Observe that the resulting contract is non-monotone if Ru > R∗, by the same logic as above.

Therefore, we can discard candidate contracts with Ru > R∗. This implies that 1+µ(1−Λ1(R1))−

λ < 0 among the set of feasible contracts.

Now, consider the derivative in liquidations α(R1), given by54

∂L

∂α(R1)
∝ λ (γ−1)+χ(R1)b+ν(R1)(1− γ)

When α(R1) = 1, ν(R1) = 1 is possible at at most a single point, in particular at γR1Y0 = xu.

α(R1) = 1 therefore generically implies χ(R1)> 0 and ν(R1) = 0. From the FOC for c(R1), we

have (almost everywhere) that when α(R1) = 1

χ(R1) = λ −1−µ(1−Λ1(R1))

which, combined with the liquidation rule, yields

∂L

∂α(R1)
∝ λ (γ−1)+(λ −1−µ(1−Λ1(R1)))b.

By MLRP, there is a threshold rule R1 ≤ R` for liquidations.

Finally, in the region (if non-empty) between R` and Ru, by MLRP we have

1+µ(1−Λ1(R1))−λ < 1+µ(1−Λ1(Ru))−λ < 0

54Implicitly, we are treating α(R1) as a continuous variable in performing the differentiation. To do so, we implicitly
incorporate the constraint α(R1)(1−α(R1)) = 0, which ensures that implementable contracts must set α(R1) ∈ {0,1}.
The logic below is unaffected.
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so that we have either χ(R1)> 0 or ν(R1)> 0. This implies that x(R1) = min{(1−b)R1Y0,xu} for

all R` ≤ R1 ≤ Ru.

As a result, the optimal contract is a three-part structure. First, there is a threshold R` such that

α(R1) = 1 and x(R1) = γR1Y0 for R1 ≤ R`, and α(R1) = 0 for R1 ≥ R`. Second, there is a threshold

Ru ≥ Rl such that x(R1) = min{(1− b)R1Y0,xu} for R1 ≤ Ru and x(R1) = xu for R1 ≥ Ru. Note

finally that there cannot be a discontinuity in x at Ru. If there were a discontinuity, we would have

xu > lim
R1↑Ru

x(R1) = (1−b)RuY0

and x would exceed pledgeable income at Ru. The capital structure is therefore continous at Ru.

Finally, the above capital structure can be implemented by a liabilities contract L(R1) =

(1−b)R`Y0 for R1 ≤ R` and L(R1) = x(R1) for R1 > R`. This liability structure is monotone, and

so we have implementable contracts.

In sum, the optimal contract lies within a class of contracts characterized by thresholds R` and

Ru and corresponding liability structure above. This proves the first part of the proposition.

Now, we characterize the optimal thresholds R` and Ru. Considering the case where these

thresholds are interior, R < R` ≤ Ru ≤ R we have the optimization problem

max
R`,Ru,Y0

∫ Ru

R`

bR1Y0 f1,H(R1)dR1 +
∫ R

Ru

[R1− (1−b)Ru]Y0 f1,H(R1)dR1

subject to

∫ Ru

R`

bR1Y0

(
1−Λ1(R1)

)
f1,H(R1)dR1+

∫ R

Ru

[R1− (1−b)Ru]Y0

(
1−Λ1(R1)

)
f1,H(R1)dR1 ≥ B0Y0

Y0−A0 =
∫ R`

R
γR1Y0 f1,H(R1)dR1 +

∫ Ru

R`

(1−b)R1Y0 f1,H(R1)dR1 +
∫ R

Ru

(1−b)RuY0 f1,H(R1)dR1
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Under the same multiplier convention, the optimality condition for R` is

0 =−bR`Y0−µbR`Y0

(
1−Λ1(R`)

)
+λ (γ− (1−b))R`Y0,

which reduces to

µb(Λ(R`)−1) = b+λ (1−b− γ) .

Similarly, the optimality condition for Ru is

0 =
∫ R

Ru

[−(1−b)Y0 f1,H(R1)−µ(1−b)Y0(1−Λ1(R1)) f1,H(R1)+λ (1−b)Y0 f1,H(R1)]dR1,

which reduces to

0 = E [λ −1−µ(1−Λ1(R1))|R1 ≥ Ru,e0 = H] .

This completes the proof.

A.2.1 A Remark on Contract Uniqueness

The optimal contract is not generally unique in the following sense. In the region R≤ R`, the bank

only needs a liability face value that is sufficient to liquidate the bank, and so any contract with

monotone face value L(R1)> (1−b)R1Y0 in this region is optimal. We selected the contract with

a flat face value below R` due to its correspondence to standard debt. The face value of liabilities

above R` is uniquely determined. Moreover, in the presence of an ε → 0 premium for standard debt

(e.g. as in Appendix B.7), the implementation using standard debt becomes uniquely optimal.

A.3 Proof of Corollary 4

Consider the proposed liability structure. The amount (1−b)R`Y0 of standard debt liquidates the

bank when R1 ≤ R`, generating the lower region. (1−b)(Ru−R`) is written down in the region

R` ≤ R1 ≤ Ru, so that the bank is always held to the agency rent over this region. The full debt level
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(1−b)RuY0 is repaid above Ru. Therefore, we replicate the contract in Proposition 3.

A.4 Proof of Proposition 5

We split the proof into the different cases.

Case 1: Suppose first that B0 = 0, but b > 0 and γ(s)< 1−b. We impose (1−b)E[R]< 1 to obtain

a finite solution. Incentive compatibility at date 0 is now

E [c(R1)(1−Λ(R1)) |e0 = H]≥ 0.

For any monotone c, we have

E [c(R1)(1−Λ(R1)) |e0 = H] = cov(c(R1),1−Λ(R1))≥ 0

where the inequality follows from MLRP. As a result, any monotone consumption rule c satisfies

(IC-0). Thus the optimal contract structure is determined by date 2 payoffs of Lemma 2, with no

liquidations at date 1. This can be interpreted either as bail-in debt or long-term debt.

Case 2: Consider next b = 0. The RHS of (12) then collapses to λ (1− γ) while the LHS collapses

to 0, and so banks never choose to liquidate. Optimal contracts use only bail-in debt.

Case 3: Consider finally γ = 1. Any face value L(R1) ≤ R1Y0 can then be repaid by liquidating

assets, so that bank consumption is c(R1) = R1Y0−L(R1) for any L(R1)≤ R1Y0. Therefore for any

liability structure L(R1), we can define

(c(R1),x(R1)) =

 (R1Y0−L(R1),L(R1)) , L(R1)≤ R1Y0

(0,R1Y0) , L(R1)≥ R1Y0

where the relevant liquidation function α(R1) is defined from the liability structure. Minimum

A.9



pledgeability never binds. One interpretation is that if (1−b)R1Y0 < L(R1)< R1Y0, then we have

liquidation with a liquidating dividend paid to equity.

Defining the problem in the repayment space, we then have

max
∫

R1

[R1Y0− x(R1)] f1,H(R1)dR1,

subject to ∫
R1

[R1Y0− x(R1)] (1−Λ1(R1)) f1,H(R1)dR1 ≥ B0Y0

Y0−A =
∫

R1

x(R1) f1,H(R1)dR1

R1 ≥ R′1⇒ x(R1)≥ x(R′1)

with 0≤ x(R1)≤ R1Y0. Relaxing monotonicity, the FOC for x(R1) is given by

∂L

∂x(R1))
= [−1−µ (1−Λ1(R1))+λ ] f1,H(R1)

yielding a non-monotone live-or-die contract (see the proof of Proposition 3). This results in an

upper pooling region Ru with liabilities xu. Because Ru < R∗ as in the proof of Proposition 3, we

have x(R1) = R1Y0 for all R≤ Ru. Continuity implies L(R1) = RuY0 for all R, and so the contract is

standard debt.

A.5 Proof of Proposition 6

Take the optimization problem of choosing the thresholds R` and Ru obtained from the proof of

Proposition 3. In particular, we can rewrite the investor participation constraint as

Y0 =
1

1−
[∫ R`

R γR1 fH(R1)dR1 +
∫ Ru

R`
(1−b)R1Y0 fH(R1)dR1 +

∫ R
Ru
(1−b)RuY0 fH(R1)dR1

]A0.
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We substitute this into the objective function and denote the objective as the utility function

U(R`,Ru)=

∫ Ru
R`

bR1 f1,H(R1)dR1 +
∫ R

Ru
[R1− (1−b)Ru] f1,H(R1)dR1

1−
[∫ R`

R γR1 f1,H(R1)dR1 +
∫ Ru

R`
(1−b)R1 f1,H(R1)dR1 +

∫ R
Ru
(1−b)Ru f1,H(R1)dR1

]A0.

Finally, we can use incentive compatibility to represent Ru(R`), that is

∫ Ru(R`)

R`

bR1(1−Λ1(R1)) f1,H(R1)dR1+
∫ R

Ru(R`)
[R1− (1−b)Ru(R`)] (1−Λ1(R1)) f1,H(R1)dR1 =B0

which allows us to represent the utility function U(R`,Ru(R`)) as a utility function over a single

variable R`, U(R`). The first order condition for optimality is U′(R`) = 0. We are now ready to take

a comparative static. In particular, in the usual manner we know that

∂R`

∂γ
=

∂ 2U
∂R`∂γ

−∂ 2U
∂R2

`

which has the same sign as ∂ 2U
∂R`∂γ

. Thus, we look to evaluate the cross partial.

First taking the derivative in γ , note that incentive compatibility does not depend on R`, and

therefore Ru(R`) is not a direct function of γ . Thus, we have

∂U

∂γ
= U(R`)

∫ R`
R R1 f1,H(R1)dR1

1−
[∫ R`

R γR1 f1,H(R1)dR1 +
∫ Ru

R`
(1−b)R1 f1,H(R1)dR1 +

∫ R
Ru
(1−b)Ru f1,H(R1)dR1

] .

Now, we can take the derivative in R`. Given that at an optimum U′(R`) = 0, then we have (since
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we have continuity of payoffs at the boundary Ru)

∂ 2U

∂γ∂R`
=U(R`)

R` f1,H(R`)

[
1−
[∫ R`

R γR1 f1,H(R1)dR1 +
∫ Ru

R`
(1−b)R1 f1,H(R1)dR1 +

∫ R
Ru
(1−b)Ru f1,H(R1)dR1

]]
(

1−
[∫ R`

R γR1 f1,H(R1)dR1 +
∫ Ru

R`
(1−b)R1 f1,H(R1)dR1 +

∫ R
Ru
(1−b)Ru f1,H(R1)dR1

])2

+U(R`)

∫ R`
R R1 f1,H(R1)dR1 ·

[
γR` f1,H(R`)− (1−b)R` fH(R`)+

∫ R
Ru
(1−b)∂Ru

∂R`
f1,H(R1)dR1(

1−
[∫ R`

R γR1 f1,H(R1)dR1 +
∫ Ru

R`
(1−b)R1 f1,H(R1)dR1 +

∫ R
Ru
(1−b)Ru f1,H(R1)dR1

])2

which rearranges to

∂ 2U

∂γ∂R`
=U(R`)R` f1,H(R`)

[
1− (1−b)

[∫ Ru
R R1 f1,H(R1)dR1 +

∫ R
Ru

Ru f1,H(R1)dR1

]]
+
∫ R

Ru
(1−b)∂Ru

∂R`
f1,H(R1)dR1

]
(

1−
[∫ R`

R γR1 f1,H(R1)dR1 +
∫ Ru

R`
(1−b)R1 f1,H(R1)dR1 +

∫ R
Ru
(1−b)Ru f1,H(R1)dR1

])2

The first expression in the numerator is positive since we assume pledgeable income is less than 1

to ensure finite scale ((1−b)E[R1|e0 = H]< 1). The second term is positive as long as ∂Ru
∂R`
≥ 0. To

see why this is the case, differentiating incentive compatibility note that we have

bR`

(
1−Λ(R`)

)
f1,H(R`) =

∂Ru

∂R`

∫ R

Ru(R`)
(1−b)(1−Λ1(R1)) f1,H(R1)dR1.

From Proposition 3, we know both terms are positive when R` ≤ Ru, and so we have ∂Ru
∂R`
≥ 0.

Therefore, we have ∂ 2U
∂γ∂R`

≥ 0 and hence ∂R`
∂γ
≥ 0. Moreover from IC, we also have ∂Ru

∂γ
≥ 0.

Next, we want to ask how Ru−R` changes in γ . Suppose we are not at a corner solution,

R` < Ru. Then, using IC and Proposition 3 we have

1
R` f1,H(R`)

∂Ru

∂γ
=

b+λ (1−b)−λγ

b+λ (1−b)−1
∂R`

∂γ
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and therefore, we have

∂ [Ru−R`]

∂γ
=

[
R` f1,H(R`)

b+λ (1−b)−λγ

b+λ (1−b)−1
−1
]

∂R`

∂γ
,

from which the required condition follows.

A.6 Proof of Proposition 7

First, the derivation of Lemma 2 follows exactly as before. Thus we once again work in the space

(α,x,c) and then back out implementing L.

The program of the social planner is

maxE [c(R1)|e0 = H]

subject to

E [c(R1)(1−Λ1(R1))|e0 = H]≥ B0Y0

Y0−A = E[x(R1)|e0 = H]

R1 ≥ R′1⇒ x(R1)≥ x(R′1)

c(R1)≥ (1−α(R))bR1Y0

γ = γ(Ω), Ω =
∫

α(R1)R1 f1,H(R1)dR1

where only the last equation is different from the private program in the proof of Proposition 3.

The proof follows as in the proof of Proposition 3. First solve for the optimal contract without

monotonicity. The first order condition for c(R1) is the same as in the proof of Proposition 3, since

c(R1) does not directly affect Ω. This implies as before that we obtain a pooling region at the top,

xu and Ru.

As before, take Ru and xu as given, and solve for the optimal contract for R1 ≤ Ru. The same
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steps imply that implementable contracts must satisfy Ru < R∗ for the same definition of R∗, else

the contract would be non-monotone. The FOC for optimal liquidations α(R1) is now

∂L

∂α(R1)
∝λ (γ(Ω)−1)R1Y0 f1,H(R)+χ(R1)bR1Y0 f1,H(R1)+ν(R1)(1− γ)R1Y0 f1,H(R1)

+
∂γ(Ω)

∂Ω

∂Ω

∂α(R1)
λ

∫
R′

α(R′)R′Y0 f1,H(R′)dR′

Substituting in the derivative ∂Ω

∂α(R1)
= R1 f1,H(R1) and recalling the assumption of constant elasticity

Ω

γ

∂γ

∂Ω
=−σ ,55 we obtain

∂L

∂α(R1)
∝ λ (γ−1)+χ(R1)b+ν(R1)(1− γ)−λσγ

The additional wedge −λσγ is negative and independent of R1. Thus the same steps apply as in

the proof of Proposition 3, yielding a liquidation threshold rule R`. Because as before Ru < R∗, we

have x(R1) = min{(1−b)R1Y0,xu} in the region R` ≤ R1 ≤ Ru, with continuity at Ru for the same

reason. Thus, the set of candidate optimal contracts is the same as in the private equilibrium, and

the implementation of Corollary 4 holds (optimal contracts combine standard and bail-in debt).

Lastly, we characterize the optimal choices of R` and Ru for interior solutions. The optimality

condition for Ru is identical to the private optimality condition, since it does not affect the liquidation

value. By contrast, the social optimality condition for R` satisfies

b+λ ((1−b)− γ) = µb(Λ1(R`)−1)−λσγ.

which gives the result. Finally, the FOC for Ru is the same.

The only remaining part of the proposition is the comparative static (Proposition 6). Adopting

notation of the proof of Proposition 6, we can write for the social planner

dU(R`,Ru)

dR`
=

∂U
∂R`

+
∂U
∂γ

∂γ

∂R`

55Note the same steps can be used to prove the result even without constant elasticity.
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The first term on the RHS is the private bank derivative. We know that ∂U
∂γ

> 0 and that ∂γ

∂R`
< 0.

Therefore, we have dU
dR`

< ∂U
∂R`

. Thus at the private optimum, we have dU
dR`

< 0. Thus the planner

lowers R` and there is less standard debt. Finally, the comparative static on total debt and bail-in

debt is derived only from incentive compatibility, and hence the results on total and bail-in debt

hold under an analogous condition as Proposition 6.

A.7 Proof of Corollary 8

We need only to verify that the ex post bail-in authority achieves the same outcome as the contractual

liabilites of the social optimum. In the region R1 < R`, the non-bail-inable senior debt exceeds asset

values, and the bail-in authority is unable to resolve the bank. The bank is liquidated.

In the region R` ≤ R1 < Ru, if the bail-in authority does not intervene then the bank gets 0,

senior non-bail-inable debt gets xS(R1) = min{(1− b)R`,γR1}, and junior bail-inable debt gets

max{γR1− xS(R1),0}. If by contrast the bail-in authority intervenes, it recapitalizes the bank with

any haircut R′−R` ≤ R1−R` ≤ Ru−R` to bail-inable junior debt. Senior non-bail-inable debt gets

fully repaid and is weakly better off. The bank gets payment bR′ and is better off. Junior bail-inable

debt gets (1−b)(R′−R`), and is better off local to R′ = R1 because γ < 1−b. Therefore, there is

a Pareto efficient haircut. The haircut that maximizes total recovery value to creditors is R′ = R1,

which is the same outcome as contractual bail-in debt.

In the region Ru ≥ R1, the bank is solvent, and all debt is repaid in full. A haircut on bail-inable

debt is not Pareto efficient, and the bail-in authority does not act.

Hence, the bail-in authority implements the social optimum.

A.8 Proof of Proposition 9

Consider the program of the planner with uncertainty. Thus the program is identical to that in

Proposition 7 except for the aggregate uncertainty, and we can write all expectations as being

over σ and all policies as functions of (R1,σ). Thus, all the same steps tell us we have a contract
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(R`(σ),Ru(σ)) that is σ -adapted. The first order condition for the R`(σ) is identical to the charac-

terization in Proposition 7. Hence since the Lagrange multipliers (µ,λ ) are invariant to σ , from

MLRP we have that R`(σ) falls in (1−σ)γ . Suppose that R`(σ) were not decreasing in σ . Then

there are states σ1 > σ2 such that R`(σ1) > R`(σ2) and (1−σ1)γ1 > (1−σ2)γ2. But this means

that γ1 > γ2, a contradiction. Hence, R`(σ) decreases in σ . Finally, the first order condition for Ru

takes the same form as in the proof of Proposition 3 regardless of the σ realization, hence Ru does

not depend on σ . This concludes the proof.

A.9 Proof of Proposition 10

First consider incentive compatibility. Investor utility after contracts have been signed is given by

∫
c(R1) f (R1|e0)dR1 +

1
2

B0(1− e2
0)Y0.

Thus differentiating in e0, we obtain

∫
c(R1)(1−Λ1(R1)) fH(R1)dR1 = B0e0Y0.

Therefore, the banks’ program is identical to that in Proposition 3, except for the new definition

of incentive compatibility and the fact that e0 ∈ [0,1] is also a choice variable. The Lagrangian is

hence also identical. When µ > 0 and hence there is positive value to higher effort, the proof that

optimal contracts combine standard and bail-in debt proceeds using exactly the same steps as the

proof of Proposition 3. For the socially optimal contract, note that total liquidations are now given

by Ω =
∫

α(R1)R1 f1,H(R1|e0)dR1. Thus when µ > 0 and there is positive value to higher effort,

the proof that optimal contracts combine standard and bail-in debt also proceeds in the same manner

as the proof of Proposition 7.

Note that the interpretation of µ > 0 is the same as the baseline model. Define a wedge in
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incentive compatibility ∆ by

∫
c(R1)(1−Λ1(R1)) fH(R1)dR1 +∆ = B0e0Y0.

We therefore have
∂L

∂∆
= µ,

that is µ is the marginal value of a marginal commitment to increase effort provision.

Finally, let us consider the privately and socially optimal choices of Ru. We know that both

take the same form as Proposition 3 and 7, but a direct comparison can no longer be made due to

differences in equilibrium values of e0. From incentive compatibility, we know that local to the

optimum
∂e0

∂Ru
=−

∫ R

Ru

(1−b)(1−Λ1(R1)) fH(R1)dR1 < 0

which follows from the usual FOC for Ru.

Now, we can take the social first order condition over Ru. Representing the program in the

form of Proposition 3 but internalizing the effort choice e0(R`,Ru), we have the social first order

condition for Ru given by

0 =
∂L

∂Ru
+λ

∂L

∂γ

∂γ

∂Ru

where the second term is the part uninternalized by private agents. Previously, it had been equal to

zero. However, now we have
∂γ

∂Ru
=

∂γ

∂Ω

∂Ω

∂e0

∂e0

∂Ru

We know that ∂γ

∂Ω
< 0 and, as just argued, ∂e0

∂Ru
< 0 local to the social optimum. Finally, we know

that
∂Ω

∂e0
=
∫ R`

R
R1(1−Λ1(R1)) f1,H(R1)dR1 < 0

where the last line follows since Λ1(R1)> Λ1(R`)> 1 for R1 < R`.56 Thus since ∂L
∂γ

> 0, we know

56For completeness, note that we must indeed have Λ1(R`) > 1. If hypothetically we had Λ1(R`) < 1, then a
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there is a negative wedge on the margin in the social FOC for Ru relative to the private FOC for Ru,

and hence there is a positive tax on total debt Ru in the decentralization. This concludes the proof.

A.10 Proof of Proposition 11

Recall from Section 2.6 that we have γ(σ ,R`) = γ(σ)Ω(R`)
−σ , where γ(σ) = γΩ

σ and that we

have assumed Ω≥Ω in equilibrium. Note that we have

∂ 2U
∂σ∂R`

=
∂

∂σ

[
(1−σ)γ(σ ,Ω(R`))

∂Ω

∂R`

]
=

[
− γ +(1−σ)

∂γ

∂σ

]
∂Ω

∂R`
< 0

where the last line follows since σ < 1, ∂γ

∂σ
< 0, and ∂Ω

∂R`
> 0. Recall that the efficient rule R`(σ)

of Proposition 9 is a decreasing function of σ . Thus we have a quasilinear mechanism design

problem with a one-dimensional action R` and a one dimensional type σ that satisfies the usual

Spence-Mirrlees condition, and so we have an incentive compatible mechanism for some T .57 Note

that because R`(σ) is an decreasing function and U is an decreasing function of R`, then T (σ) is an

increasing function of σ .

For completeness, we derive an incentive compatible mechanism when Σ = {σ ,σ}. The

derivation follows in the usual manner and we only present the full argument for completeness. We

will specify the smallest punishment T (σ)> 0 possible when T (σ) = 0. Incentive compatibility

for type σ implies the smallest possible punishment is

T (σ) =U(σ ,R`(σ))−U(σ ,R`(σ)).

Now, we verify incentive compatibility for type σ . Monotonicity gives

U(σ ,R`(σ))−U(σ ,R`(σ))≥U(σ ,R`(σ))−U(σ ,R`(σ)).

reduction in R` improves private welfare, reduces fire sales directly, and also reduces fire sales indirectly by promoting
effort. Thus, Λ1(R`)< 1 is never efficient.

57To obtain the standard form of the condition as positive cross-partial and nondecreasing allocation, recall we can
always redefine the type as θ = 1−σ .
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Note the LHS is −T (σ), so we get

U(σ ,R`(σ))−T (σ)≥U(σ ,R`(σ))−T (σ)

giving incentive compatibility for type σ . The final step comes from simply substituting in that

U(σ ,R`) = (γ−1)Ω(R`) when σ = 0.

A.11 Proof of Proposition 12

We adopt the following proof strategy. We will consider a contract that results in bailouts, and

show that it is equivalent to a contract that: (1) features bail-ins (rather than bailouts) ex post; and,

(2) implements an ex ante lump sum transfer from taxpayers to the bank. Thus, all contracts with

bailouts are equivalent to contracts without bailouts combined with lump sum transfers. We then

construct the Pareto weight that equalizes marginal utility and hence rules out transfers.

Suppose that there is a liability structure with a bailout at return R1, so that L(R1)> (1−b)R1Y0

and T1(R1) = L(R1)− (1− b)R1Y0. This generates consumption profile c(R1) = bR1Y0 and a

repayment to investors x(R1) = L(R1) = (1− b)R1Y0 +T1(R1) = x̂(R1)+T1(R), where x̂(R1) is

repayment out of bank resources. Substituting into the participation constraint, we have

Y0−A0−E[T1(R1)]≤ E
[

x̂(R1)

]
.

The problem is otherwise identical. Hence, from the bank perspective the bailout T1(R) is equivalent

to a bail-in contract combined with a lump-sum transfer of equal expected value from taxpayers to

the bank at date 0. Moreover, taxpayer optimization of B0 implies the change in contract also has

no impact on taxpayer welfare, since the taxpayer simply adjusts B0 in response to maintain the

same path of consumption.

Thus, we need merely to characterize the Pareto weight that equalizes marginal utility. Defining

the social welfare weight on taxpayers to be ωT = λ

u′0(c
T
0 )

, then the social planner is indifferent to
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transfers between banks and taxpayers at date 0. Thus we have equalized marginal utilities, meaning

we have a Pareto efficient contract of Proposition 7 without bailouts. This concludes the proof.

B Extensions

In this Appendix, we provide a number of extensions. Appendix B.1 allows for positive arbitrageur

welfare weights. Appendix B.2 allows for aggregate risk. Appendix B.3 characterizes optimal

contracts without monotonicity. Appendix B.4 considers the interaction between macroprudential

(asset-side) and liability-side regulation. Appendix B.5 studies the allocation of bail-in securities

among heterogeneous investors with different risk tolerances and different exposures to the banking

sector. Appendix B.6 incorporates a role for (outside) equity-like claims into the bank’s capital

structure by incorporating bank risk aversion and risk shifting. Appendix B.7 allows for standard

debt to command a premium over other instruments, including bail-in debt. Appendix B.8 studies

the trade-off between bailouts and bail-ins in protecting insured deposits when banks are allowed

to issue insured deposits as part of their standard debt. Appendix B.9 studies bailouts without

commitment.

B.1 Pareto Efficiency

We now study Pareto efficient social contracts, accounting for positive welfare weight ωA on

arbitrageurs. Recall that we have assumed that u′(A)> 1. We obtain the following result.

Proposition 13. Let σ > 0. Then, the socially optimal contract features R` given by

µb(Λ1(R`)−1) = b+λ ((1−b)− γ)−λσγω
∗

where ω∗ = 1− 1
u′(A−A0)

> 0. As a result, the privately optimal contract is not Pareto efficient given

u′(A)> 1.
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Pareto efficient improvements arise because arbitrageurs are borrowing constrained, so that their

marginal utility at date 0 exceeds that at date 1. Efficiency is achieved by transfering resources to

arbitrageurs at date 0 in order to compensate them for resource losses from lower surplus from bank

liquidations. This is a form of distributive externality.

When we take ωA→ 0, the associated point on the Pareto frontier is A0→ A and u′(A−A0)→

+∞, and we obtain the first order condition of Proposition 7.

B.1.1 Proof of Proposition 13

We can characterize a Pareto efficient contract by adopting the welfare function

E [c|e0 = H]+ω
A [u(A−A0

)
+(F (Ω)− γ(Ω)Ω)Y0

]
,

where ωA is the welfare weight on arbitrageurs. The optimality of standard and bail-in debt follows

the same steps as in the proofs of Propositions 3 and 7. However, in writing the optimal choice of

threshhold R`, we now account for arbitrageur surplus and obtain

b+µb(Λ1(R`)−1) = b+λ ((1−b)− γ)−
(

λ −ω
A
)

σγ.

Finally, the optimality condition for A0 is given by λ = ωAu′(A−A0). Substituting in completes

the proof.

B.2 Aggregate Risk

To incorporate aggregate risk into the model, we add an aggregate state s ∈ S of the economy at

date 1. For expositional simplicity, we assume that S is a finite set, with probability measure π(s).

Also for expositional simplicity, we assume s only affects the distribution over date 1 returns and

not over date 2 returns. In this sense, we think of date 2 as being “the long run.”

The aggregate state s affects the return distribution, so that we have f1,e(R1|s). All contracts
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can be written on the aggregate state. MLRP now applies contingent on the aggregate state, and

liability monotonicity is also contingent on the aggregate state.

From here, the characterization of privately optimal contracts follows almost identically to

before.

Proposition 14. A privately optimal bank contract has an aggregate-state-contingent form of that

in Proposition 3, where both R`(s) and Ru(s) now depend on s.

Proof. The proof follows the same steps as the proof of Proposition 3, except that contracts are now

adapted to (R1,s). �

In contrast to the baseline model, both instruments are contingent on the aggregate state,

reflecting that the terms of bank contracts adjust to verifiable events that are beyond a bank’s control.

For example, if all else equal a state s has lower returns due to an aggregate (TFP) shock, equation

(12) implies it should have a lower liquidation threshold.58

In the context of CoCos, conditioning the level of bail-in debt on both the idiosyncratic state

(i.e. individual bank health) and aggregate state (i.e. banking sector health) can be thought of as

a dual trigger (see also Proposition 9 in the main text). In this context, there is R`(smin) of fully

non-contingent debt, and Ru(smax) of bail-in debt with a dual-price trigger. The dual price trigger

writes down bail-in debt automatically to Ru(s) based on the aggregate state s, and allows for it to

be additionally written down to R`(s)−R`(smin) to restore bank solvency. The dual price trigger

thus conditions recapitalization of banks on the aggregate state as well as the idiosyncratic state.59

From here, the results on the socially optimal contract proceed identically, with the state

contingency. Similarly, the bailout results can also be derived, where the result is that no bail-in

debt is issued for state s whenever there are bailouts in state s. This helps to understand the limits

of bank contingencies on verifiable aggregate risk. Although aggregate risk is verifiable and not

58See Dewatripont and Tirole (2012) for a related argument.
59Alternatively, we could consider it a combination of R`(smin) of fully non-contingent debt, Ru(smax) of debt with a

dual price trigger but no automatic write-down, and an aggregate risk hedge that mimicked the automatic write-down.
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a result of bank shirking, banks neglect fire sales and expect to receive bailouts in bad aggregate

states. This limits the extent to which they write contingencies on aggregate risk.

B.2.1 Bail-in Equivalence with Aggregate Risk

As highlighted above, the degree of bail-inability of debt depends on the aggregate state. Such

rules either must be contractually pre-written into debt contracts, or must be written into the rules

governing the operations of the bail-in authority. Provided that such rules are specified to govern

ex-post resolution, the equivalence between ex-ante contractual provisions and ex-post resolution

follows as in the baseline model.

In the US, such rules could be implemented using the organizational structure of the bank.

Bank holding companies are required to maintain an amount of loss-absorbing debt at the level of

the top-level holding company. The goal is to resolve the top-level holding company while allowing

operating subsidiaries to continue operations without being affected by the resolution of the holding

company. In principle, however, if a full write-down of the liabilities at the holding company level is

not sufficient to recapitalize the bank, recapitalization would require bail-ins of debt at the operating

subsidiaries. One could structure the governing rules of the bail-in authority to condition the ability

of that authority to resolve operating subsidiaries based on the state of the economy. Operating

subsidiaries could be resolved by the bail-in authority in crises, but not in normal times.

It is not clear whether aggregate state contingent rules governing the bail-in authority could

credibly be implemented and followed. A bail-in authority is likely to be tempted to recapitalize

a bank if there is enough long-term debt available to do so, suggesting the potential for time

inconsistency in bail-ins.

B.3 Optimal Contract Without Monotonicity

In the main text, we impose that liability contracts must be monotone. In this appendix, we

characterize the optimal contract without monotonicity. For simplicity, we focus solely on the date
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0 effort choice.60

In order to do so, we will need to bound investor payoffs below. In particular, we impose the

following limited liability constraint on investors,

x(R1)≥−x,

where x≥ 0 is therefore the minimum payment that can be made to the bank by investors. If x = 0,

then this is a limited liability constraint in the standard sense that investors cannot be forced to pay

money into the bank after date 0. We obtain the following characterization of a privately optimal

contract.

Proposition 15. A privately optimal bank contract has a liability structure

x(R1) =


(1−b)R`Y0, R1 ≤ R`

(1−b)R1Y0, R` ≤ R1 ≤ Ru

−x, Ru ≤ R1

where Rl and Ru are given by

µb(Λ(R`)−1)︸ ︷︷ ︸
Incentive Provision

= b+λ (1−b− γ)︸ ︷︷ ︸
Liquidation Costs

(A.2)

µ (1−Λ(Ru))︸ ︷︷ ︸
Incentive Provision

= λ −1︸ ︷︷ ︸
Investor Repayment

(A.3)

Proof. The proof proceeds identically to the steps in the proof of Proposition 3, except that we do

not need to impose monotonicity and hence get xu =−x. �

The optimal contract of Proposition 15 is a form of live or die contract (Innes 1990). As in

60We could always rederive Lemma 2 in a similar manner as a continuation live-or-die contract and an associated
agency rent.
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the model with monotonicity (Proposition 3), in the region R1 ≤ R` the bank is liquidated, while

in the region R` ≤ R1 ≤ R` the bank is held to its agency rent via “bail ins.” The key difference

is the upper region. In the model with monotonicity, liabilities were L(R1) = (1−b)RuY0 in this

region, corresponding to debt. Here instead, investors make the largest payment possible to banks

in this region, x(R1) =−x≤ 0, in order to best incentivize effort. Note that taking x→ ∞ results in

Ru→ R, that is the bank will receive an arbitrarily large repayment in only the highest return state.61

The following corollary provides a simple implementation of this contract, using one additional

instrument relative to Corollary 4.

Corollary 16. Absent monotonicity, the privately optimal contract can be implemented by a combi-

nation of three instruments:

1. Standard debt with face value (1−b)R`Y0.

2. Bail-in debt with face value (1−b)RuY0.

3. An insurance contract (or option) that pays out (1−b)RuY0− x to the banker in the event

that R1 ≥ Ru, and pays out 0 otherwise.

Corollary 16 shows that removing monotonicity simply requires the addition of an insur-

ance/option contract to the bank’s capital structure. The contract pays off a fixed amount (1−

b)RuY0−x in “success’ states of high returns, R1 ≥ Ru. This allows the banker to repay all debthold-

ers, as well as receive the highest payment x from investors possible.

From here, the core regulatory results of Proposition 7 proceeds as before. A social planner

with a complete set of regulatory instruments implements the same contract structure as Proposition

15, but sets R` lower to account for the fire sale, thus increasing the use of bail-in debt. However,

the planner agrees with the bank over choice of Ru and use of the insurance/option contract. Thus,

the qualitative insights for bail-in policies remain in this case.

61This follows necessarily from the participation constraint of investors.
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B.4 Macroprudential Regulation and Bail-ins

In the baseline model, the fact that banks have a single investment project means that liability-side

regulation is sufficient. In practice, banks asset allocations also affect their risk profiles. We now

show that macroprudential (asset-side) regulation is a necessary complement to bail-ins when banks

can affect risks using both sides of their balance sheet.

We augment the model as follows. Banks choose a contractible vector θ = (θ1, ...,θN) of

asset allocations at date 0. The total return R1 on bank scale Y0 follows a density f1,e(R1|θ), which

depends on the allocation θ . For simplicity, R2 does not depend on θ . f1,e(R1|θ) satisfies MLRP

(conditional on θ ) over the relevant range of allocations θ . To simplify exposition, the support of

R1 is an interval [R,R] that does not depend on θ . Otherwise, the setup is the same as before.62

As before, optimal liability contracts combine contingent and standard debt, and the trade-off

between standard and bail-in debt reflects the same forces as before.63 We now characterize the

optimal asset allocation rule under the socially optimal contract.

Proposition 17. The socially optimal contract has FOC for θn

0 =E
[(

λx(R1)+ c(R1)

(
1+µ

(
1− ∂ f1,L(R1|θ)/∂θn

∂ f1,H(R1|θ)/∂θn

)))
∂ f1,H(R|θ)/∂θn

f1,H(R|θ)

]
︸ ︷︷ ︸

Private Bank Benefit

+λE
[

∂γ

∂Ω
ΩY0 ·

[∫ R`

R
R1

∂ f1,H(R1|θ)
∂θn

dR1

]]
︸ ︷︷ ︸

Fire Sale Cost

The first line of Proposition 17 reflects the private trade-off to banks of a change in asset composition,

corresponding to changes in the return distribution. These changes are weighted by the (weighted)

sum of payoff to investors in those states, and to banks in those states, where the weighting reflects

62In Appendix B.4.1, we show how a standard asset allocation problem generates a density function of this form.
If the shirking benefit B(θ) depended on the allocation, e.g. because riskier assets are more difficult to monitor, the
planner and banker would agree on how θ affects B. Assets in our model all sell at the same discount and generate the
same fire sale spillover. If they differed in terms of liquidation discounts and fire sale spillovers, there would be an
additional regulatory incentive on this margin.

63Given that θ is contractible, the proof follows the same steps as Proposition 3.
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both the direct value of payoffs, and the incentive value of payoffs. The second line of Proposition

17 reflects the social cost of changes in asset composition. The social cost arises when changes in

the return distribution affect the magnitude of the fire sale spillover, by altering the measure Ω of

bank liquidations. When an asset increases the probability that the banks’ total return is lower than

Rl , larger allocations to that asset result in more severe fire sale spillovers. The social cost term

penalizes investment in such assets. The social cost term exists whenever R` > R, that is whenever

liability-side regulation has not completely eliminated bank failures.

Proposition 17 illustrates that macroprudential (asset) regulation is a necessary complement

to bail-ins (liability regulation). Macroprudential regulation and bail-ins co-exist in the regulatory

regime because they control fire sales in different manners. For a given level of asset risk, bail-

ins mitigate fire sales by reducing the liquidation threshold. For a given liquidation threshold,

macroprudential regulation mitigates fire sales by reducing the probability that a bank will fall

below that threshold.64 These two aspects of regulation are not generally perfect substitutes, so they

co-exist under the optimal regulatory regime.

Even though macroprudential regulation and bail-ins are not perfect substitutes, Proposition

17 suggests that bail-ins are a partial substitute for macroprudential regulation. Stronger liability

regulation pushes the magnitude of the additional wedge in the asset allocation decision towards

zero, by reducing the size of the liquidation region.

B.4.1 Multiple Assets Density Function

Suppose that there are N+1 assets between which the bank allocates its funds. Denote ω ∈ [ω,ω] to

be the underlying idiosyncratic state of the bank, with associated density f ω
e (ω), where e ∈ {H,L}.

Suppose that f ω
e (ω) satisfies MLRP, so that ∂

∂ω

(
f ω
H (ω)

f ω
L (ω)

)
> 0.

Asset n ∈ {1, ...,N +1} generates a return Rn(ω) per unit. Let θ = (θ1, ...,θN+1) be a vector

that determines the asset allocations θ1Y0,...,θN+1Y0. Allocations θ satisfy a technological restriction

F (θ) = 0, for example there may be a concave technology. Note that to coincide with the previous

64Macroprudential regulation in our model closely risk weights on loss-absorbing capital.
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parts, we assume the technology is linear in the scale Y0, and only (potentially) concave in the asset

weights. If F (θ) = ∑
N+1
n=1 θn−1, we have a simple linear technology with equal cost of investment

across assets.

We invert θN+1 from (θ1, ...,θN) via F , so that we can internalize the constraint. We denote

the total return to the bank, given an asset allocation vector θ , by

R(ωθ) =
N+1

∑
n=1

θnRn(ω)Y0

where θN+1 is derived from the technology F (θ) = 0, given θ1, ...,θN .

Suppose that conditional on θ , there is an injective mapping between ω and R1. In this case,

R1 identifies ω , given θ , and we can write contracts on R1. We assume that the mapping is injective

over the relevant range of asset allocations θ . For example, this will be the case if asset allocations

are non-negative (θn ≥ 0) and individual asset returns are monotone in ω . Without loss of generality,

we assume the injective mapping is monotone increasing: high states ω identify high returns R1,

consistent with the interpretation of e = H as “high effort.”

Denote R−1(R1|θ) to be the inverse function mapping the total return R1 into the idiosyncratic

state ω . The inverse function does not depend directly on e, but rather the density will depend on e.

We now derive the density of R1, conditional on θ . We have

F1,e (R1|θ) = Pr(R(ω|θ)≤ R1|e) = Pr
(
ω ≤ R−1 (R1|θ) |e

)
= Fω

e
(
R−1 (R1|θ)

)
.

Differentiating in R, we obtain the density function:

f1,e (R1|θ) = f ω
e
(
R−1 (R1|θ)

) ∂R−1 (R1|θ)
∂R1

We impose the simplifying assumption that the support [R,R] of the density is invariant to the

allocation θ . If the support depended on the portfolio allocation, we would have boundary terms

in derivatives. The principal term of relevance would be how the lower boundary of the support
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moves in the asset allocation, which reflects changes in the measure of the liquidation region. These

effects are qualitatively the same as the direct effects of changing the measure from changes in the

density. For simplicity, we keep the support fixed.

Finally, we can show that this function satisfies monotone likelihood. Differentiating the

likelihood ratio in R, we obtain

d
dR1

(
f1,H (R1|θ)
f1,L (R1|θ)

)
=

d
dR1

(
f ω
H
(
R−1 (R1|θ)

)
f ω
L (R−1 (R1|θ))

)

=

∂ f ω
H

∂ω

∂R−1(R1|θ)
∂R1

f ω
L −

∂ f ω
L

∂ω

∂R−1(R1|θ)
∂R1

f ω
H

( f ω
L )2

=
∂

∂ω

(
f ω
H

f ω
L

)
∂R−1 (R1|θ)

∂R1

> 0

where in the last line, we have used MLRP on f ω
e combined with monotonicity of R−1.

As a result, we obtain a representation of the problem as a density f1,e(R1|θ). Implicitly, we

differentiate in (θ1, ...,θN), where we have internalized θN+1 as arising from the technology.

B.4.2 Proof of Proposition 17

Consider the optimal contract of the social planner. Holding fixed the debt levels Rl and Ru, the

derivative of the planner’s Lagrangian in θn is given by

0 =E
[

c
∂ f1,H(R1|θ)/∂θn

f1,H(R1|θ)

]
+µE

[
c
(

∂ f1,H(R1|θ)/∂θn

f1,H(R1|θ)
− ∂ f1,L(R1|θ)/∂θn

f1,H(R1|θ)

)]
+λE

[
x

∂ f1,H(R1|θ)/∂θn

f1,H(R1|θ)

]
+λE

[∫ R`

R

∂γ(Ω)

∂Ω

∂Ω

∂θn
R1Y0 f1,H(R1|θ)dR1

]
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where the first two lines reflect the private bank trade-off, and the last line reflects the social trade-off.

Liquidations are given by

Ω =
∫ R`

R
R1 f1,H(R1|θ)dR1

so that we have
∂Ω

∂θn
=
∫ R`

R
R1

f1,H(R1|θ)
∂θn

dR1.

Substituting in above, we obtain

0 =E
[(

λx(R1)+ c(R1)

(
1+µ

(
1− ∂ f1,L(R1|θ)/∂θn

∂ f1,H(R1|θ)/∂θn

)))
∂ f1,H(R1|θ)/∂θn

f1,H(R1|θ)

]
︸ ︷︷ ︸

Private Bank Benefit

+λE
[

∂γ

∂Ω
ΩY0 ·

[∫ R`

R
R1

∂ f1,H(R1|θ)
∂θn

dR1

]]
︸ ︷︷ ︸

Fire Sale Cost

giving the result.

B.5 Heterogeneous Investors and the Allocation of Securities

In the baseline model, investors are homogeneous and risk neutral, so that the distribution of

standard and bail-in debt among investors is irrelevant. A key practical concern is what investors

should hold what form of debt, since bail-in debt holders will experience losses when it is written

down. Particular concern has been expressed about protecting retail investors from losses that are

large relative to their wealth65, and to preventing institutional investors who are potentially exposed

to fire sales from bearing losses from bail-ins.66

To capture these elements, we extend the model to include two classes of bank investors,

“institutional” and “retail.” To make the problem interesting, we include aggregate risk. Institutional

investors are able to invest across all banks, but still retain exposure to the aggregate state and
65The resolution of four Italian banks in 2015 sparked a political backlash due to losses to retail investors. Financial

Times, “Italy bank rescues spark bail-in debate as anger at Renzi grows,” December 22, 2015.
66Article 44 of BRRD states that “[m]ember states shall ensure that in order to provide for the resolvability of

institutions and groups, resolution authorities limit...the extent to which other institutions hold liabilities eligible for a
bail-in tool.”
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have preferences that may depend on bank liquidation discounts. Retail investors are only able to

invest in a single bank and retain exposure to the idiosyncratic return of that bank. For simplicity,

we abstract away from other potential components of these investors’ portfolio choice problems,

instead allowing for state dependent preferences. All investors are price takers, and purchase

state-contingent payoffs from the banks they invest in. Nevertheless, we show that in equilibrium

all investors purchase a combination of the standard and bail-in debt contracts issued by banks.

To streamline notation, we relabel R1 as R and f1,e as fe throughout this appendix. Denote

q(R,s) the (endogenous) probability-normalized price of a unit of payoff from a bank that realizes

state (R,s).67 Institutional investors are indexed by i ∈ I, have initial wealth wi
0, and preferences

ui
0(c

i
0) +E

[
ui

1
(
ci

1|s,γ(s)
)]

. Retail investors are indexed by j ∈ J, have initial wealth w j
0, and

preferences u j
0(c

j
1)+E

[
u j

1(c
j
1|s)
]
. Both I and J are finite sets, and we interpret each investor type as

corresponding to a continuum of (atomistic) agents of that type. Both types of agents have period-0

budget constraints given by

ck
0 +∑

s
π(s)

∫
R

q(R,s)xk(R,s) fH(R|s)dR = wk
0, k ∈ I∪ J.

However, they differ in their choice of c1. Institutional investors are able to diversify across banks,

so that ci
1(s) =

∫
R xi(R,s) fH(R|s)dR. Retail investors are not able to diversify across banks, and

so have c j
1(R,s) = x j(R,s). Given the contract payoff x(R,s) from the bank, market clearing for

liabilities is given by

∑
k∈I∪J

µ
kxk

1(R,s) = x(R,s)

where µk is the mass of investors of type k ∈ I∪ J.

We focus on the case where the mass of retail investors is sufficiently small that it does not

exhaust the returns of the bank in any state (R,s). That is, ∑ j µ jx j
1(R,s) < x(R,s). As a result,

both retail and institutional investors price bank liabilities on the margin. We now characterize the

67Note that the bank will go bankrupt in some states, implying not all liabilities are repaid at full face value. For
simplicity, we price units of payout directly, rather than face value.
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equilibrium of the private economy without government intervention.

Proposition 18. Suppose that in equilibrium ∑ j µ jx j
1(R,s)< x(R,s). In the private equilibrium:

1. The price q(R,s) = q(s) depends only on the aggregate state s.

2. Optimal bank contracts combine standard and bail-in debt.

3. Retail investors only purchase standard debt, and their consumption profile c j
1(R,s) = c j

1(s)

only depends on the aggregate state s. Consumption profiles of retail investors are given by

∂u j
1

(
c j

1(s)|s
)

∂c j
1(s)

= q(s)
∂u j

0

(
c j

0

)
∂c j

0

4. Institutional investors purchase both standard and bail-in debt. Consumption profiles of

institutional investors are given by

∂ui
1
(
ci

1(s)|s,γ(s)
)

∂ci
1(s)

= q(s)
∂ui

0
(
ci

0
)

∂ci
0

Even though retail investors are tied to a specific bank, their equilibrium consumption profile does

not depend on the idiosyncratic state. This implies not only that retail investors exclusively purchase

standard debt, but also that retail investors are first in line for repayment in the event of bank

liquidation. In other words, in equilibrium they purchase claims that have the highest priority for

repayment. Since retail investors are often depositors, one natural interpretation of this result is

that of deposit priority.68 However, it extends beyond deposits, and furthermore suggests that retail

bondholders may also benefit from priority. This suggests a role for non-bail-inable long-term debt,

as a way to codify protection for retail investors.

Institutional investors are not exposed to the idiosyncratic state due to their ability to diversify,

but are exposed to the aggregate state. Institutional investors face greater losses on the aggregate

68These deposits are not insured in this section, but are repaid due to their priority. In Appendix B.8, we consider
deposit insurance.
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state when either they are more risk tolerant, or less exposed to bank fire sales. This suggests that

the ideal holders of bail-in debt will be institutional investors with limited risk aversion (or ability

to diversify using other securities) and limited commonality with the banking sector, so that they

are not affected by fire sales.

Finally, consider what would happen if we relaxed the assumption ∑ j µ jx j
1(R,s) < x(R,s).

Consider an aggregate state s where ∑ j µ jx j
1(R,s) = x(R,s) for a range of returns R ≤ R∗. For

R > R∗, institutional investors are the marginal pricing agent, and q(R,s) = q(s) is a constant.

For R < R∗, retail investors are the marginal pricing agents, and q(R,s)≥ q(s). Given monotone

liabilities contracts, q(R,s) will be falling in R. Contracts will still be debt, but the optimal thresholds

are affected by the fact that retail investors suffer larger losses in liquidation, pushing q(R,s) higher

above q(s). This generates an additional trade-off for the bank in deciding the optimal composition

of standard and bail-in debt.

B.5.1 Proof of Proposition 18

Suppose that there is a state-contingent Arrow price q(R,s)= q(s) that depends only on the aggregate

state. Contracts still take the form of standard and bail-in debt, following the same steps as in the

proof of Proposition 3.

Now, consider the investor side. Begin first with instituional investors, whose Lagrangian is

given by

L i =ui
0
(
ci

0
)
+∑

s
π(s)ui

1
(
ci

1|s,γ(s)
)
+λ

i
[

wi
0− ci

0−∑
s

π(s)
∫

R
q(R,s)xi(R,s) fH(R|s)dR

]

+∑
s

π(s)µ i(s)
[∫

R
xi(R,s) fH(R|s)dR− ci

1(s)
]
.

Given the non-negativity constraint xi(R,s)≥ 0, we have

∂L i

∂xi(R,s)
=−

[
λ

iq(R,s)−µ
i(s)
]

π(s) fH(R|s)≤ 0.
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This equation holds with equality only at the lowest value of q(R,s) in state s. In other words,

investors only purchase xi(R,s)> 0 if q(R,s) = q(s), where q(s) is defined to be the lowest price of

a state-contingent security for some return state R in state s.

Suppose then that in equilibrium ∑ j µ jx j
1(R,s) < x(R,s). Then, at least one institutional

investor i is purchasing xi(R,s)> 0. As a result, we have q(R,s) = q(s) for all R in state s, that is

the price is constant in aggregate state s. Moreover, q(s)λ i = µ i(s).

From here, we can obtain λ i from the FOC for ci
0 and µ i(s) from the FOC for ci

1. Substituting

in, we obtain
∂ui

1
(
ci

1(s)|s,γ(s)
)

∂ci
1(s)

=
∂ui

0
(
ci

0
)

∂ci
0

q(s).

giving us the characterization of the consumption rules of institutional investors.

Finally, consider type- j (retail) investors. Given the constant price q(s), their Lagrangian is

L j = u j
0

(
c j

0

)
+E

[
u j

1

(
c j

1(R,s)|s
)]

+λ
j
(

w j
0− c j

0−∑
s

π(s)
∫

R
q(s)c j

1(R,s) fH(R|s)dR
)
,

so that we have optimality condition for ci
1(R,s)

∂u j
1

(
c j

1(R,s)|s
)

∂c j
1(R,s)

= λ
jq(s).

As a result, c j
1(R,s) = c j

1(s) is constant within state s. The indifference condition follows immedi-

ately by combining with the FOC for c j
0. This concludes the proof.

B.6 Outside Equity

The baseline model featured no role for (outside) equity-like instruments in the bank’s capital

structure. We extend the model to incorporate risk aversion and risk shifting, ingredients known to

generate a role for equity-like claims. Optimal contracts still feature a region of liquidations and a

region of “bail-ins,” where the bank is held to its continuation agency rent. Above the bail-in region,
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the contract involves equity-like claims.69

To streamline notation, we relabel R1 as R and f1,e as fe throughout this appendix. Banks

are risk averse and have utility u(c1 + c2) from consumption, while investors are risk averse and

have utility v(x1 + x2). Bank utility and marginal utility are finite at 0, and we normalize u(0) = 0.

We incorporate risk shifting by extending the bank’s monitoring decision to e ∈ {L,H,RS}, where

e = RS is “risk shifting” and e ∈ {L,H} are the high and low monitoring choices from before. Risk

shifting does not generate a private benefit but affects the return density, fRS(R).70 Define the

likelihood ratios λL,H(R) =
fL(R)
fH(R)

and λRS,H(R) =
fRS(R)
fH(R)

. Risk shifting inefficiently pushes mass

towards the extremes of the distribution, which we formalize by defining a point RRS ∈ [R,R] such

that ∂λRS,H(R)
∂R < 0 for R < RRS and ∂λRS,H(R)

∂R ≥ 0 for R≥ RRS.

As before, we assume optimal contracts enforce e = H. The no-risk-shifting constraint is

∫
R

u(c(R))( fH(R)− fRS(R))dR≥ 0 (A.4)

while the incentive constraint is the same as before, except with u(c(R)). Investor participation

is given by

Y0−A =
∫

R
v(x(R)) fH(R)dR.

Define λ H(R) =
µL
µ

λL,H(R)+
µRS
µ

λRS,H(R) and µ = µL +µRS.

To simplify exposition, we will assume that the characterization that follows satisfies both

consumption monotonicity for the bank and liability monotonicity for investors.71 Characterization

of contracts in settings that do not satisfy monotonicity is beyond the scope of this paper. Moreover,

we assume that the region 1+µ(1−λ H(R))< 0 is a connected set. This simplifies exposition.

Proposition 19. Let |S|= 1. Suppose that the region 1+µ(1−λ H(R))< 0 is a connected set. The

prviately optimal contract is as follows.

1. In the region where 1+µ(1−λ H(R))< 0, there are liquidations and bail-ins.
69See e.g. Hilscher and Raviv (2014) for analysis of CoCo design on risk shifting.
70We could incorporate a private benefit or cost of risk shifting without qualitatively changing results.
71Note that because both agents are risk averse, there is less scope for live-or-die contracts.
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2. In the region where 1+µ(1−λ H(R))≥ 0, there are bail-ins and “equity.” The equity sharing

rule is

u′(c(R))
(

1+µ(1−λ H(R))
)
= λv′ (RY0− c(R))

The motivations behind the liquidation region and the bail-in region are as in the baseline

model (we interpret bail-in region as automatically wiping out outside equity, but again there is

an equivalence between principal write down and debt-equity conversion for bail-in debt). In the

liquidation region, all other liabilities are wiped out. In the bail-in region, only “debt” holders are

repaid. Consider next the “outside equity” region. First, bank risk aversion moderates payouts to

the bank, smoothing the bank consumption profile on the upside and so giving away some of the

equity value to investors. Second, bank consumption decreases with the average likelihood λ H(R).

In the region R≤ RRS, λ H(R) is decreasing in R and so banker consumption is increasing. However,

when R ≥ RRS, λL,H is falling while λRS,H is rising. This second effect, which comes from the

risk shifting motivation, moderates payoffs to banks in high return states, which signal a higher

likelihood that the bank engaged in risk shifting.

We could also derive the socially optimal contract, which would internalize the fire sale

spillover cost of liquidations. However, conditional on not liquidating, bank and planner incentives

are aligned, suggesting that the planner needs only to control the trade-off between liquidations and

non-liquidations, and not the trade-off between bail-ins and “equity.”72

B.6.1 Proof of Proposition 19

Given the assumption of consumption monotonicity, if there is a liquidation region, it satisfies a

threshold rule R≤ Rl . We define the optimal contract in terms of this threshold rule and in terms of

72If effort were a continuous choice variable that affected bank returns, there would be an incentive to govern this
margin. See Mendicino et al. (2018) for a numerical study of this problem.
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liaiblities x(R) above this threshold. The bank’s Lagrangian is given by

L =
∫

R≥Rl

u(c(R)) fH(R)dR

+µL

[∫
R≥Rl

u(c(R))( fH(R)− fL(R))dR−BY0

]
+µRS

[∫
R

u(c(R))( fH(R)− fRS(R))dR
]

+λ

[
A+

∫
R≤Rl

v(γRY0) fH(R)dR+
∫

R≥Rl

v(RY0− c(R)) fH(R)dR−Y0

]
+
∫

R≥Rl

χ(R) [c(R)−bRY0] fH(R)dR

Define λ H(R) =
µL
µ

λL,H(R)+
µRS
µ

λRS,H(R) and µ = µL +µRS. We can combine the second line and

obtain

L =
∫

R≥Rl

u(c(R)) fH(R)dR

+µ

[∫
R≥Rl

u(c(R))
[
1−λ H(R)

]
fH(R)dR− µL

µ
BY0

]
+λ

[
A+

∫
R≤Rl

v(γRY0) fH(R)dR+
∫

R≥Rl

v(RY0− c(R)) fH(R)dR−Y0

]
+
∫

R≥Rl

χ(R) [c(R)−bRY0] fH(R)dR

The derivative in Rl is given by

1
fH(Rl)

∂L

∂Rl
=−u(c(Rl))

[
1+µ

(
1−λ H(Rl)

)]
+λ

[
v(γRY0)− v(RY0− c(Rl))

]

so that liquidations may be optimal when 1 + µ

(
1−λ H(Rl)

)
< 0, that is when the average

likelihood ratio is high. At low values of Rl , both the risk shifting and shirking problems have high

likelihoods, so that λ H is large. As a result, bank consumption contributes negatively to welfare.

Provided that this negative contribution outweighs the resource cost to investors, we have Rl > R.
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Next, consider the region above Rl . The FOC for consumption c(R) is

0 = u′(c(R))
(

1+µ(1−λ H(R))
)
−λv′ (RY0− c(R))+χ(R)

so that we have χ(R)> 0 when 1+µ(1−λ H(R))< 0. As a result, for all values 1+µ(1−λ H(R))<

0, we either have liquidation or bail-in.

Finally, for 1+ µ(1−λ H(R)) > 0, we either have bail-in or an interior consumption value.

When consumption is interior, it satisfies a risk sharing rule

u′(c(R))
(

1+µ(1−λ H(R))
)
= λv′ (RY0− c(R))

giving us an “equity” sharing rule.

Finally, the only role of assuming 1+µ(1−λ H(R))< 0 is a connected set in the proof is to

ensure that it there are no points with 1+µ(1−λ H(R))≥ 0 below Rl .

B.7 Premium for standard debt

In the baseline model, the incentive problem is the only motivation for issuance of standard debt. In

practice, standard debt can enjoy a premium relative to all other instruments, meaning it can pay a

lower rate of return to investors. There are two natural stories for such a premium. The first is that

standard debt takes the form of demand deposits, which enjoy a liquidity premium and require a

lower rate of return. The second is that standard debt enjoys preferential tax treatment. We show

that contracts still feature standard and bail-in debt, and that the trade-off is largely the same up

to the consideration of the return premium. We then discuss potential issues with a pure premium

story for standard debt.

To streamline notation, we relabel R1 as R and f1,e as fe throughout this appendix.

Suppose that standard debt has required return 1
1+r , where r > 0. We obtain the following

result.
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Proposition 20. Suppose the model is extended to include a premium for standard debt. Optimal

contracts combine standard and bail-in debt. The private optimality condition for standard debt is

µb
(

fL(Rl))

fH(Rl)
−1
)
= b+λ [(1−b)− γ]+ r

[
λ [(1−b)− γ]−λ

1−FH(Rl)

Rl fH(Rl)

]
.

while the optimality condition for bail-in debt is the same as in Proposition 3. The tax on Rl that

decentralizes the socially optimal contract is

τl =−(1+ r)Rl fH(Rl)
∂γ(Ω)

∂Ω

∫ Rl

R
RY0 fH(R)dR

while the tax on bail-in debt is τu = 0.

Relative to the baseline case where r = 0, when r > 0 we have the term

r
[

λ [(1−b)− γ]−λ
1−FH(Rl)

Rl fH(Rl)

]

in the private optimality condition, reflecting an additional cost/benefit trade-off of increasing use

of standard debt. This term contains two additional effects of the presence of the liquidity premium.

On the one hand, the higher liquidity premium implies that the costs of liquidation go up, because

the resources lost would have been repaid to investors who have a high willingness to pay. On

the other hand, replacing bail-in debt with standard debt increases payoff to investors with high

willingness to pay in non-liquidation states. The bank privately trades off these two forces in

choosing the optimal standard debt level, in addition to the incentive forces.

Premium versus Incentive Problems. If r > 0, then the bank is willing to issue standard debt

even in the absence of an incentive problem, that is if B = b = 0 and hence µ = 0. The premium

story alone can generate use of standard debt in the bank’s capital structure. However, in the absence

of the incentive problem the logic of Corollary 5 applies. The bank (without loss of generality)
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uses equity as its other instrument.73 The planner can implement optimal regulation with an equity

requirement. By including the incentive problem, our model provides a role for bail-in debt in

optimal contracts.

What if instead B > 0, b = 0, and r > 0, so that standard debt has value from a premium

perspective, but not from an incentive perspective (relative to bail-in debt). In this case, the optimal

contract would combine standard and bail-in debt. However, this story on its own is problematic for

two reasons.

The first is that because bail-ins typically apply to long-term debt, which were also non-

contingent prior to the crisis, the premium story revolves around premiums on long-term debt,

which is likely due to tax incentives. But if the government is subsidizing (non-contingent) long-

term debt, this suggests it must provide some fundamental economic benefit. Our model provides a

fundamental economic benefit of non-contingent long-term debt.

A second and closely related way to understand this issue is that in the event that b = 0,

banks have strong incentives to protect themselves against liquidations by backing their non-

contingent claims with liquid assets such as treasuries. This relates to a fundamental question in the

banking literature: why are illiquid assets paired with fragile (often deposit) financing? Our model

endogenously pairs illiquid assets with fragile (non-contingent) financing, rather than exogenously

imposing it. Optimal regulation in our model respects the fundamental activity of banks: backing

illiquid assets with fragile funding. A model that relies exclusively on a standard debt premium

naturally lends itself to a “narrow banking” result, where not only the planner but also banks prefer

to use safe treasuries to keep the bank from ever failing.

We could nevertheless adopt this view. The main result that would change is the non-optimality

of bailouts (Proposition 12), which would no longer generically hold. We would be back into an

incomplete markets world, in which bailouts may be desirable to mitigate fire sales, in a standard

way. Moreover in the case of deposit insurance, the planner would always prefer to bail out the

73As a technical aside, of course a bank with no incentive problem and an expected return greater than 1 would,
given linear technology, scale up to infinity. This issue is fixed simply by assuming that banks operate a concave
technology Y0 = f (I0) to produce projects.
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bank, rather than liquidating and repaying depositors. Bailing out the bank would save resources

without distorting bank incentives, and so would be strictly preferred to liquidation.

B.7.1 Proof of Proposition 20

Relative to the baseline model, the only change is that the participation constraint becomes

Y0−A =
∫ Rl

R
(1+ r)γRY0 fH(R)dR+

∫ Ru

R≥Rl

[(1+ r)(1−b)RlY0 + x1(R)]Y0 fH(R)dR

where x1(R) is repayment pledged to other investors. Note that it is immediate that standard debt

enjoys priority over other liabilities, since it has the lower required rate of return. The proof that

optimal contracts combine standard and bail-in debt follows as in the proof of Proposition 3. As a

result, the optimization problem that determines Rl and Ru is the same as before, except that the

participation constraint is now

Y0−A =
∫ Rl

R
(1+ r)γRY0 fH(R)dR+

∫ Ru

Rl

[(1+ r)(1−b)Rl +(1−b)(R−Rl)]Y0 fH(R)dR

+
∫ R

Ru

[(1+ r)(1−b)Rl +(1−b)(Ru−Rl)]Y0 fH(R)dR

This yields the private optimality condition for Rl

0 =−bRlY0 fH(Rl)−µbRlY0

(
1− fL(Rl))

fH(Rl)

)
fH(Rl)

+λ [(1+ r)γRlY0 fH(Rl)− (1+ r)(1−b)RlY0 fH(Rl)]+λ

∫ R

Rl

r(1−b)Y0 fH(R)dR

which rearranges to

µb
(

fL(Rl))

fH(Rl)
−1
)
= b+λ [(1−b)− γ]+ r

[
λ [(1−b)− γ]−λ

1−FH(Rl)

Rl fH(Rl)

]

Because Ru is not directly impacted by the liquidity premium, the optimality condition for Ru is as
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before, assuming that Ru > Rl .

The planning problem features a wedge of the same form as before. The only difference is that

the wedge is now weighted by 1+ r, reflecting the higher liquidation losses. In other words, the

planning problem is decentralized by the tax

τl =−(1+ r)Rl fH(Rl)
∂γ(Ω)

∂Ω

∫ Rl

R
RY0 fH(R)dR.

As before, Ru does not contribute to liquidations, and therefore τu = 0.

B.8 Safety Premia and Insured Deposits

In this appendix, we study the interaction between our unobservable effort model and a safety

premium story. This synergizes well with the observation that protecting insured deposits is another

goal of bail-in regimes. It also allows us to shed further light on bail-ins versus bailouts as means of

protecting insured deposits.

To streamline the model, we assume there are no fire sales (fixed γ).

There are special depositors who place an excess value β > 0 on a completely safe bank deposit

at date 0, that is they are willing to pay 1+β for a safe deposit. At date 1, special depositors will

withdraw their funds and be replaced by regular investors if rollover occurs. The number of special

depositors that show up to a given bank is (1−b)RdY0 for a fixed Rd > R. We thus abstract away

from the optimal level Rd and focus on the residual capital structure and how the planner protects

special depositors. We assume that the planner extends deposit insurance to special depositors, so

that banks can treat special deposits as completely safe. The bank is always insolvent if R < Rd ,

absent intervention, regardless of its other liabilities. Because deposits are insured, the planner is

liable for any shortfall relative to the face value (1−b)RdY0. Insured deposits are always at the top

of the creditor hierarchy in liquidation.74

The planner chooses bailouts with commitment. Bailouts have a constant variable cost tau > 0.

74In practice, banks may issue wholesale funding which is not insured but runs prior to resolution.
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Thus a bailout that recapitalizes an insolvent bank costs

CostNo Liquidation = τ (L(R1)− (1−b)R1Y0)

where L(R1) is total liabilities including insured deposits.When the planner instead allows the bank

to fail, insured deposits receive the entire liquidation value and are covered by deposit insurance, so

that the cost in taxpayer funds is

CostLiquidation = min{τ ((1−b)RdY0− γR1Y0) ,0}

Note that even when L(R1) = (1−b)RdY0 and there are only insured deposits remaining, the cost

of rescuing the bank with a bailout is lower than the cost of rescuing the bank under liquidation,

due to the loss of pledgeable income in liquidation.

The planner solves for the optimal contract, which includes the rescue decision (either via

bailout or via liquidation and repayment by insurance).75 We constrain bank consumption to be

monotone, that is c(R1) must be nondecreasing in R1,76 which was satisfied by optimal contracts in

the baseline model. This implies that bailouts must be monotone: if a an insolvent bank R1 is bailed

out, then all insolvent banks R′1 ≥ R1 must also be bailed out. This rules out the possibility that the

planner bails out a bank with R1 < Rd to protect depositors but liquidates a bank with R1 >
1−b

γ
Rd

for incentive reasons.

Proposition 21. The socially optimal contract consists of insured deposits Rd , standard (uninsured)

debt R` ≥ Rd , and bail-in debt Ru ≥ R`. The following are true:

1. If R` > Rd , there is deposit insurance but no bailouts. The bank is liquidated when R1 ≤ R`.

2. If R` = Rd , there is a threshold RL ≤ Rd such that the bank is liquidated when R1 ≤ RL and

75A technical aside is that it is possible that the planner does not find it optimal to allow the bank to scale up as
much as possible due to the cost of insuring deposits. We assume this is not the case, for example if Rd is close to R.

76If c(R1)> c(R′1) but R1 < R′1, the bank could increase its payoff ex post by destroying assets to bring its return
down to R1. We look for contracts where value destruction is not ex post optimal.
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bailed out when RL ≤ R1 ≤ Rd . The indifference condition is for bailouts (when interior) is

µb(Λ1(RL)−1) = b+ τ (1−b− γ) .

Proposition 21 illustrates the capital structure decision and method of protecting insured deposits. If

R` > Rd , the optimal contract combines insured deposits and uninsured deposits. Intuitively, this

will tend to occur when liquidation costs γ and bailout costs τ are not too high. If these costs are

high, then R` = Rd and there are only insured deposits. This arises due to the trade-off between

deposit insurance and bailouts for protecting special depositors. Bailing out the bank reduces the

taxpayer cost of deposit insurance, but provides worse incentives for the bank. Whenever the

planner allows use of standard debt in excess of insured deposits, that is R` > Rd , then necessarily

the planner will commit to rescue depositors but not the bank. In this case, there is deposit insurance

but no bailouts. If R` = Rd and RL < Rd , the planner uses bailouts ex post in order to reduce the

cost of protecting depositors. Interestingly, this is a case where special depositors play both roles.

B.8.1 Proof of Proposition 21

Due to consumption monotonicity, there is a threshold RL ≥ R for bank liquidation, with RL = R

corresponding to no liquidations. As in the proof of Proposition 12, there are no bailouts above Rd ,

due to the taxpayer burden. We can thus split the problem into two parts.

First, suppose that the liquidation threshold satisfies RL > Rd , and suppose that the planner

finds it optimal to engage in bailouts in a states R1 < Rd . By consumption monotonicity, there are

also bailouts for Rd ≤ R1 ≤ RL. But then because transfers to regular investors are inefficient, it is

optimal to set RL = Rd , as in the proof of Proposition 12. The optimal contract does not feature both

RL > Rd and bailouts. Consider then the form of the optimal contract when RL > Rd . Because there

are no bailouts, the social objective function is

∫
c(R1) f1,H(R1)dR1−

∫
R1≤RL

τ max{(1−b)Rd− γR1,0}Y0 f1,H(R1)dR1
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while the corresponding investor participation constraint is

Y0−A0 = β (1−b)RdY0+
∫ RL

R
max{(1−b)Rd,γR1}Y0 f1,H(R1)dR1+

∫
R1≥RL

((1−b)Rd + x(R1)) f1,H(R1)dR1

where x is repayment to regular investors, and where incentive compatibility is the same a in the

baseline model. From here, note that the trade-off above RL is the same as in the baseline model.

The model again combines standard and bail-in debt, as in the baseline model.

Consider next the optimal contract when RL < Rd . RL then also corresponds to the bailout

threshold, such that there are bailouts when RL ≤ R1 ≤ Rd , and where RL = Rd corresponds to no

bailouts. The resulting social objective function is

∫
c(R1) f1,H(R1)dR1−

∫ RL

R
τ [(1−b)Rd− γR1]Y0 f1,H(R1)dR1−

∫ Rd

RL

τ(1−b)(Rd−R1)Y0 f1,H(R1)dR1

while investor repayment is given by

Y0−A = (1+β )(1−b)RdY0 +
∫ R

Rd

x(R1) f1,H(R1)dR1

reflecting that depositors are always repaid. Finally, incentive compatibility is as in the baseline

model. Optimal contracts again combine standard and bail-in debt.

Consider the choice of the liquidation threshold RL. The trade-off is the same as in the baseline

model, expect that an increase in the liquidation threshold leads to a tax burden on taxpayers rather

than a cost to investors. That is, the FOC for the liquidation threshold is

0 =−bRL−µbRL (1−Λ1(RL))− τ

[
(1−b)Rd− γRL− (1−b)(Rd−RL)

]

which simplifies to

b+ τ (1−b− γ) = µb(Λ1(RL)−1) .
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The only change is that the effective costs of liquidations has risen, due to the greater burden on

taxpayers (τ > λ ). If the solution to this equation features RL < Rd , then there are bailouts in states

RL ≤ R1 ≤ Rd .

B.9 Bailouts and Time Consistency

It is useful to consider how lack of commitment can change our result.

We begin by studying collective moral hazard (Farhi and Tirole 2012), where bailout temptation

results from many small banks failing simultaneously. Formally, we suppose that there is a fixed

cost of engaging in any bailouts, FY0, which scales with the size of the overall banking system.

After paying the fixed cost, the cost of bailouts is simply the utilitarian transfer cost of 1. For

simplicity, suppose there is no fire sale and γ is fixed (although we can obtain similar results with a

fire sale).

Consider the problem of a utilitarian bailout authority ex post. The total loss from liquidations

is given by ∫ R`

R
(1− γ)R1Y0 f1,H(R1)dR1.

Since γ < 1, if the planner engages in any bailouts, then the planner bails out all insolvent banks.

Therefore, the planner engages in bailouts when

∫ R`

R
R1 f1,H(R1)dR1 >

F
1− γ

The left hand side is an increasing function of R`, whereas the RHS is constant in R`. Therefore,

there is a threshold R∗` such that all banks are bailed out if R` > R∗` , and no banks are bailed out if

R` < R∗` . R∗` increases in the fixed cost and in the liquidation value.

From here, we obtain the following result.

Proposition 22. In the model with collective moral hazard, the social planner imposes the require-

ment R` ≤ R∗` . No bailouts occur.
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Proposition 22 illustrates that when time consistency results from collective moral hazard,

it can still be efficient to rule out bailouts. Here, ruling out bailouts is distortionary when R∗` is

lower than the optimal level without bailouts. This means welfare is reduced by the need to rule out

bailouts.

Next, we suppose that rather than collective moral hazard, the social planner has limited fiscal

capacity. Formally, the planner has total resources XY0 available from taxpayers to engage in

bailouts at date 1. These resources have no cost beyond utilitarian cost, but there is no fixed cost of

accessing them.

When X > 0, it is easy to see that whenever R` > R, some bailouts occur. The reason is that

the marginal insolvent bank, R1 ↑ R`, requires a bailout of size T ↓ 0 to recapitalize, but results

in a resource saving of (1− γ)R`. More generally, the utilitarian cost means the planner ex post

uses its entire fiscal capacity to bail banks out. The cost of bailing out a bank with R1 < R` is

(1−b)(R`−R1)Y0, so the planner bailouts out banks starting from the highest return in order to

capitalize on fiscal slack. In other words, total bailouts result in a new threshold Rx
` given by

∫ R`

Rx
`

(1−b)(R`−R1) f1,H(R1)dR1 = X .

From here, we can differentiate the above equation to obtain

−∂Rx
`

∂R`
(1−b)(R`−Rx

`)+
∫ R`

Rx
`

(1−b) f1,H(R1)dR1 = 0

meaning that Rx
` is an increasing function of R`, that is more banks are liquidated as R` rises.

Intuitively, higher R` forces the planner to exhaust its fiscal slack more quickly, allowing more

liquidations.

If fiscal slack is not too large, it turns out the planner can implement the private optimum in a

manner that results in ex post bailouts (recall that we have abstracted away from fire sales).

Proposition 23. There is a threshold fiscal capacity X such that if X < X, then the planner can
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implement the private optimum in a Pareto efficient manner. In particular, the planner sets R` ≤ Ru

such that Rx
` is equal to the privately optimal liquidation rule of Proposition 3. Bailouts occur for

banks Rx
` < R1 ≤ R`. The planner requires a lump sum transfer of X from banks to taxpayers at date

0 to compensate taxpayers for bailouts.

The intuition of Proposition 23 is that when bailouts are costless (aside from the transfer), then

the planner cannot rule bailouts out ex post without requiring banks to set R` = R. However, the

planner can exhaust the ex post fiscal capacity by pledging R` higher than the private optimum. In

particular if fiscal capacity is not too large, the planner can set R` ≤ Ru to be high enough that, after

fiscal capacity is exhausted, the marginal liquidated bank Rx
` is exactly the one from the privately

optimal contract. The requirement X < X is needed to ensure that the level of standard debt needed

to achieve Rx
` while exhausting fiscal capacity is below the total debt level Ru associated with the

private optimum. Finally, to achieve a Pareto efficient allocation the planner needs to engage in a

lump sum transfer of X from banks to taxpayers, so that taxpayers are no worse off than if there

were no bailouts.

If instead X > X , the planner would have to set R` > Ru to get X to its privately optimal level,

but this no longer implements the private optimum. Thus, the planner has to move to a different

(privately suboptimal) contract. In this case, bailouts are costly in the sense that they distort the

private optimum, similarly to collective moral hazard.

In both cases, contract distortions arise when it is easier for the planner to engage in ex post

bailouts. In the first case, distortions are larger as F falls and hence R∗` falls. In the second case,

distortions occur when fiscal capacity becomes sufficiently large, X > X . In this sense, both cases

are consistent with the notion that a planner would want to try to tie their hands ex ante to make ex

post bailouts harder.
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B.9.1 Proof of Proposition 22

Suppose that the planner chose R` > R∗` . In this case, all banks are bailed out ex post. Hence, this

contract is equivalent to a contract featuring only bail-in debt, R` = R, combined with an ex ante

lump sum transfer from taxpayers to banks. Selecting an ex ante welfare weight on taxpayers of

ωT = λ , bailout transfers reduce welfare due to the fixed cost. Hence, mandating R` = R is superior

to choosing R` > R and generating bailouts. Hence, the planner restricts banks to choose R` ≤ R∗` ,

and no bailouts occur.

B.9.2 Proof of Proposition 23

Let Ru be the total debt level under the privately optimal contract. Note that Rx
` decreases in fiscal

capacity X and increases in R`. Set Rx
` to the threshold under the private optimum. Then, an

increase in fiscal capacity X decreases Rx
`, and so requires an increase in R`. Therefore, there is a

maximum fiscal capacity X so that R` ≤ Ru. From here, suppose that X < X and the planner chooses

(Rx
`,Ru) according to the private optimum. The required R` then lies below Ru. Bailouts of banks

Rx
` < R1 ≤ R` occur, meaning that banks with R1 ≤ Rx

` are liquidated and banks with Rx
` ≤ R1 ≤ Ru

continue in such a manner that banks are just paid their minimum agency rent. Thus we have

the same feasible contract as the private optimum, except that banks’ participation constraint is

slackened by the bailout transfer X , that is we effectively have inside equity A0 +X . Imposing

a lump sum transfer X from banks to taxpayers reduces banks’ inside equity back to A0. This

implements the privately optimal contract in a manner that makes taxpayers no worse off, and hence

is efficient.
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