
Numerical Appendix for:

Micro and Macro Uncertainty

Andreas Schaab

December 27, 2020

Job Market Paper

Please find the latest version here.

Overview. This Numerical Appendix provides details on the structure, implementation
and performance of the global solution method I develop to solve the two-asset HANK
model presented in the paper. Section 1 summarizes the model equations, in part for con-
venience but also to recast some equations in the form used for numerical implementation.
Section 2 discusses the structure of the algorithm. Section 3 provides additional imple-
mentation details, and discusses the performance and fit of the solution method. Section 4
develops a numerical method to decompose the transmission mechanism of exogenous
shocks, generalizing the method of Kaplan et al. (2018) to state-space representations of
heterogeneous-agent models with aggregate risk.
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1 Model Summary

The main aggregate driving process of the model is the discount rate shock ρt. Indeed, in
the main text I denote the aggregate state of the economy as (ρt, gt) for simplicity. However,
various experiments studied in the main text and appendix require an enlargement of
the state space. For example, the fundamental risk shock I use in Section 5.1 to study
the transmission mechanism of macro uncertainty requires adding σρ,t as an additional
exogenous driving process to the state space. The fiscal policy experiments discussed in
the appendix also require additional state variables. To study fiscal multipliers, I solve the
model with Gt added as an aggregate state variable. To study policy uncertainty, I add
both Gt and σG,t as state variables. More broadly, every “shock experiment” we wish to
study requires that we introduce the shock as an additional aggregate state variable and
re-solve the model.

In short, it will be convenient in the context of this numerical appendix to summarize
all aggregate driving processes using a flexible vector notatation Zt ∈ Rd. The aggregate
state of the economy is then given by (Zt, gt). As discussed at length in the main text and
appendix, I approximate the infinite-dimensional cross-sectional distribution using an
approximation of the form ĝt(x) = F(αt)(x) ≈ gt(x), where x = (a, k, z) is the vector of
idiosyncratic household state variables and αt ∈ RN. Consequently, the aggregate state
space of the approximate economy, whose numerical solution is the subject of this appendix,
is given by Γ̂t = (Zt, αt). This approximate aggregate state vector has dimension d + N.
Since this numerical appendix makes hardly any reference to the true mathematical model,
I will drop the hat notation with the understanding that our discussion references the
approximate economy unless explicitly stated otherwise.

Finally, Proposition 3 of the main text tells us that dαt follows a time-homogeneous
diffusion process with drift µα(Γt) and volatility σα(Γt). Combining this with the assump-
tion that the exogenous driving processes Zt also follow diffusion processes, we can write
the law of motion of the aggregate state as

dΓt = µΓ(Γt) + σΓ(Γt)dBt, (1)

where Bt now refers to the vector of all aggregate risk factors that enter Zt.

1.1 Household problem

The recursive representation of the household problem is developed in Appendix A.3
of the main text. In the present context, it will be convenient to collapse or “stack” the
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two earnings types, so that Vzµz ≡ λ(zj)[V(z−j) − V(zj)].1 The resulting household
Hamilton-Jacobi-Bellman (HJB) equation can then be written as

(ρ + ζ)V = u(c, H) + Vkm + Vas + Vzµz + VZµZ +
1
2

σT
ZVZZσZ + Vαµα (2)

where

s = (r + ζ)a +
(

rk +
ΠQ

K

)
k + e− qι− ψ(ι, k)− c (3)

m = (ζ − δ)k + ι (4)

are used as shorthand notation for the drift of the household’s liquid and illiquid asset
positions.2 I suppress notationally the dependence on state variables with the understand-
ing that both the value function, V(·), and the policy functions, c(·) and ι(·) as well as the
shorthand s(·) and m(·), are functions of the household states (a, k, z, Z, α). Similarly, all
macroeconomic aggregates, such as the interest rate r(·) or the laws of motion µZ(·) and
µα(·), are understood as functions of the economy’s aggregate state (Z, α). As before, Vx

denotes the partial derivative of V with respect to x. Lastly, the policy functions c(·) and
ι(·) are implicitly defined in terms of the value function by the optimality conditions

uc = Va (5)

and
Vk =

(
q + ψι

)
Va. (6)

State constrained boundary conditions. A complete definition of the partial differential
equation (2) requires a set of boundary conditions. For simplicity, I impose reflecting
boundaries in the aggregate dimensions (Z, α). Achdou et al. (2015) discuss how state
constrained boundary conditions must be used in the idiosyncratic dimensions (a, k) to prop-
erly reflect the borrowing and short-sale constraints on liquid and illiquid asset positions.
These boundary conditions in my model are identical to those used and discussed in
Kaplan et al. (2018) since I use the same household portfolio structure. For details, please
refer to the Achdou et al. (2015) Online Appendix as well as Kaplan et al. (2018).3

1Computationally, we simply stack the individual columns V j associated with the discrete earnings
types j.

2Recall that, for my main model, σα = 0 since the Kolmogorov forward equation that governs the
evolution of the cross-sectional distribution is not stochastic. Therefore, the usual second-derivative term
with respect to α drops out.

3The appropriate treatment of state constrained boundary conditions is orthogonal to the implementation
of adaptive sparse grid methods to solve the household problem and, for that matter, to the rest of my
algorithm. In this context, my method therefore requires nothing that is not already discussed in these
papers.
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1.2 Firm problem

When working with a sequence-space representation of the model, Phillips curves of-
tentimes take the form of readily implementable differential or difference equations (e.g.
Kaplan et al. (2018) or Auclert et al. (2020)). In my setting, deriving an implementable
equation for inflation is more complicated and requires setting up and solving the value
function associated with the firm problem. Since firms solve a dynamic problem in this
model, they are exposed to and internalize aggregate risk, much like households.

The goal is to derive an implementable function π(Γ) that associates a level of CPI
inflation π that is consistent with firm optimization with every aggregate state Γ. My
strategy will be as follows. First, I set up the recursive problem of an individual firm. The
only state variable of the firm is its individual price, which I denote by p. It is important
that, at this stage, firms understand their individual prices p may be different from the
aggregate consumer price P. Taking all macroeconomic aggregates as given, including
the aggregate price P, each small firm’s value function then implies an inflation policy
function. Finally, with these policy functions in hand, we aggregate by assuming symmetry
to arrive at an aggregate Phillips curve π(Γ).

In Section 2.2 of the main text, I introduce the sequence problem of the firm, which I
restate here for convenience. Instead of referring to firms by using j indexation, I adopt the
above-mentioned state space notation and associate a particular firm with its individual
price, or its idiosyncratic state variable, p. The sequence problem is

max
πt

E0

∫ ∞

0
e−
∫ t

0 rk
s ds
[(

pt

Pt
−mct

)(
pt

Pt

)−ε f

Yt −Λt(πt)

]
dt.

where firm-level inflation is πt = ṗt/pt and

Λt(πt) =
χ f

2
π2

t Yt.

To solve the associated firm value function problem, it will turn out to be highly
convenient to perform a state space transformation. Notice that, since all firms take the
same Pt as given, we can also use a firm’s relative price as its idiosyncratic state variable.
Denoting p̃ = p/P, the firm’s recursive problem takes the form of a Hamilton-Jacobi-
Bellman equation given by

rkW f ( p̃, Γ) = max
π̃

{
p̃1−ε f

Y−mcp̃−ε f
Y−Λ(π̃, Γ) + W f

p̃ π̃ p̃ + W f
Γ µΓ +

1
2

σΓW f
ΓΓσT

Γ

}
where π̃ = ˙̃p/ p̃ denotes relative price inflation. I suppress the dependence of aggregates
like Y and mc on Γ on the RHS. Furthermore, I use the superscript f to distinguish the firm
value function W f from the union value function Wu which I will derive below.
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The only object left unspecified in this HJB is the adjustment cost term Λ(·), which
we have to appropriately rewrite as a function of relative price inflation and the aggregate
state. We have

Λ(π̃, Γ) =
χ f

2

(
π̃

1− π(Γ)
+ π(Γ)

)2

Y(Γ),

where, importantly, π(Γ) = Ṗ/P now refers to aggregate CPI inflation. Suppressing the
notational dependence of prices and aggregates on Γ, the firm HJB becomes

rkW f ( p̃, Γ) = max
π̃

{
p̃1−ε f

Y−mcp̃−ε f
Y− χ f

2

(
π̃

1− π
+ π

)2

Y + W f
p̃ π̃ p̃ (7)

+ W f
Γ µΓ +

1
2

σΓW f
ΓΓσT

Γ

}
.

The associated first-order condition for firm inflation is given by

π̃ =
(1− π)2

χ f Y
W f

p̃ p̃− π(1− π), (8)

and is therefore a policy function taking as inputs the firm’s idiosyncratic and aggregate
state variables, π̃ = π̃( p̃, Γ).

Lastly, to characterize aggregate CPI inflation, we assume that all firms are symmetric
and aggregate. In the context of relative price inflation, symmetry requires that

π̃( p̃, Γ) | p̃=1= 0.

This condition maintains that, in any aggregate state Γ, a firm does not seek relative price
inflation when its current price is symmetric to that of all other firms, p̃ = 1. Plugging this
into equation (8) and inverting, we arrive at the desired mapping

π(Γ) =
W f

p̃ (1, Γ)

χ f Y(Γ) + W f
p̃ (1, Γ)

, for all Γ. (9)

From here, our implementation strategy is very straightforward: Solve the partial differ-
ential equation (7) on the associated firm grid ( p̃, Γ), compute the partial derivative W f

p̃ ,
evaluate it at the point p̃ = 1, and plug back into equation (9).

1.3 Union problem

My implementation strategy for the union problem largely mirrors that for the firm
problem. For convenience, I restate union k’s sequence problem

max
πw

k,t

E0

∫ ∞

0
e−
∫ t

0 (ρs+ζ)ds
[ ∫

u(ct, ht)gtdx− χw

2

(
πw

k,t

)2

Lt

]
dt.
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As in the previous subsection, I now write the union’s recursive problem using its
relative wage, w̃ = Wk/W, as the only idiosyncratic state variable. The recursive problem is
then given by

(ρ + ζ)Wu(w̃, Γ) = max
π̃w

{ ∫
u
(

c(x, Γ; w̃), h(x, Γ; w̃)

)
gdx− χw

2

(
πw

k

)2

L (10)

+ Wu
w̃w̃π̃w

}
+ Wu

Γ µΓ +
1
2

σT
Γ Wu

ΓΓσΓ.

As before, the only step left is to express πw
k in terms of relative wage inflation. We have

πw
k =

π̃w + πw − (πw)2

1− πw =
π̃w

1− πw + πw.

Thus, the union’s first-order condition can be written as

π̃w =
(1− πw)2

χwL
Wu

w̃w̃− πw(1− πw), (11)

which characterizes the policy function for relative wage inflation, π̃w, in terms of the state
variables (w̃, Γ).

As in the context of the firm problem, a symmetric equilibrium requires that

π̃w(w̃, Γ) |w̃=1= 0,

so that firms find it individually optimal, at the symmetric equilibrium point w̃ = 1, not
to seek relative wage inflation. Plugging this into equation (11), evaluating at w̃ = 1, and
rearranging yields

πw(Γ) =
Wu

w̃(1, Γ)
χwL(Γ) + Wu

w̃(1, Γ)
. (12)

To implement this equation for nominal wage inflation, I solve the union HJB (10) on a
grid over (w̃, Γ), take the partial derivative Wu

w̃ and evaluate it at w̃ = 1, and finally plug
back into equation (12).

TBD. Discuss how I implement c(x, Γ; w̃) and h(x, Γ; w̃) (as functions of w̃) by projecting
and appropriately aggregating the respective policy functions from the household grid
over (x, Γ) onto the union grid over (w̃, Γ).

1.4 Macro block

The “macro block” of the model is the set of equations that associates with each aggregate
state Γ a set of endogenous macroeconomic objects. The set of relevant macroeconomic
aggregates is given, in no particular order, by the functions

{r, rk, q, ΠQ, τlump, H, w, Y, C, I, L, π, πw, A, K, U, Ψ}(Γ).
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The macro block is then defined as the set of equations

Y = K1−βLβ

ΠQ = qI − I −Φ
(

I
K

)
K

q = 1 + Φ′
(

I
K

)
τlump = Π + τlabwL− τUIU − G− rBG

Π = (1−mc)Y

mc =
1

ββ(1− β)1−β

(
rk
)1−β(

w
)β

r = i− π

rk =
1− β

β
w

L
K

i = max
{

r∗ + π̄ + λππ + λY log
(

Y
Y∗

)
, 0
}

A = BG

Y = C + I + Φ + Ψ + G,

together with equations (9) and (12) from the firm and union problems for π(Γ) and πw(Γ),
respectively. r∗ and Y∗ denote steady state values of the real interest rate and output,
respectively. The equations of the macro block are combined with an aggregation block
that characterizes the aggregate household sector by aggregating from the micro level,

A =
∫

aF(α)(x)dx

K =
∫

kF(α)(x)dx

C =
∫

c(x)F(α)(x)dx

L =
∫

zh(x)F(α)(x)dx
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I =
∫

ι(x)F(α)(x)dx

Ψ =
∫

ψ(ι, k)F(α)(x)dx

U = 1−
∫

zF(α)(x)dx,

where U is the aggregate unemployment rate. Since unions impose symmetric labor hours,
the aggregate labor supply equation simplifies to L = (1 − U)H. One of the market
clearing conditions can be dropped using Walras’ law. Lastly, the exogenous aggregate
discount rate process follows

dρ = θρ(ρ̄− ρ)dt + σρdB,

where the Brownian motion B is the only aggregate risk factor in the baseline model.

1.5 Deterministic steady state

Formally, the deterministic steady state, or stationary equilibrium in the language of
Achdou et al. (2015), is defined as the equilibrium of my economy in the limit as σρ → 0 so
that aggregate risk vanishes.

I compute the deterministic steady state of the model at the very beginning of the
algorithm, and use it as a starting guess. In particular, I initialize the distribution repre-
sentation F0(α)(x) using the cross-sectional distribution that obtains in the deterministic
steady state. See Section 2.3 for details.

1.6 Recursive equilibrium and state space representation

A recursive competitive equilibrium of approximate economy n is defined as the sets of
functions {V, g, c, ι}(a, k, z, Γ) and {r, rk, q, τlump, H, w, Y, K, H, C, I, L, π, πw}(Γ) such that:
(i) All agents optimize given general equilibrium prices, (ii) markets clear in all aggregate
states Γ, and (iii) agents act according to beliefs that are consistent with the law of motion
of approximate economy n.
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2 Algorithm Structure

This section develops an algorithm to solve for the recursive equilibrium described above
in Section 1.6. This algorithm consists of up to 3 hierarchical levels or, more formally, up to
3 nested fixed points. This high-level structure is illustrated below.

Algorithm Structure

Level 3: Update the distribution representation  

Level 2: Solve for GE prices to clear markets

Level 1: Solve the household problem

The broad strategy of this algorithm is therefore as follows: In the nth outer iteration,
corresponding to Level 3, we choose an approximate distribution representation

ĝn
t (x) = Fn(αt)(x) ≈ gt(x).

Echoing the language I adopt in the main text, the nth approximate economy is then defined
as the model that takes ĝn

t (x) as its cross-sectional distribution. In other words, the
nth approximate economy is defined as a restricted version of the true model which
assumes that agents behave according to the belief that the cross-sectional distribution
evolves according to d

dt Fn(αt)(x).4 A fixed point may then be constructed that solves
a sequence of approximate economies with increasingly accurate fit. If the algorithm
achieves convergence (heuristically, in the sense ĝn

t (x)→n gt(x)), the beliefs of agents in
the nth approximate economy will become consistent with the model’s true law of motion
for n sufficiently large. This outer fixed point corresponds to Level 3 of my algorithm, and
is discussed in Section 2.3.

In the nth outer iteration, Level 1 and Level 2 of the algorithm together constitute a
solution of the model that takes ĝn

t (x) as its cross-sectional distribution. In particular, Level
1 solves for the value and policy functions associated with the household problem taking
as given all GE objects like prices. I use a value function iteration (VFI) algorithm which I
discuss in Section 2.1. In this context, I build on the seminal contribution of Achdou et al.
(2015) by, among other things, solving the associated VFI on an arbitrarily irregular grid.

4In the seminal Krusell and Smith (1998) algorithm, a “behavioral” version of the model is solved
in which agents believe that capital follows the exogenously specified law of motion. In the same spirit,
my algorithm solves a sequence of approximate economies in which agents believe the cross-sectional
distribution evolves consistently with dαt.
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In the middle step of my algorithm, Level 2, I then solve for the general equilibrium
prices that clear markets while aggregating household behavior from the micro level
using the policy functions obtained from the VFI. Broadly speaking, two approaches
could be considered for this step. Achdou et al. (2015) and Kaplan et al. (2018) use a
fixed-point iteration algorithm to solve for the impulse response functions of GE objects
in a sequence-space representation of their models. In this paper, I develop a flexible
and robust non-linear equation solver that delivers substantial performance gains. My
approach is therefore in the spirit of Auclert et al. (2020) and related papers that leverage
Newton-type solvers. I develop the structure of this algorithm in Section 2.2 and discuss
its performance in Section 3.4.

In the remainder of this section, I flesh out the details of my algorithm by starting
from the inner (VFI) and working my way to the outer (distribution representation) fixed
point.

Comparison to Krusell and Smith (1998). Two main features distinguish the structure of
my algorithm from Krusell and Smith (1998), aside from the obvious difference that I do
not use a moments-based distribution approximation. First, algorithms in the spirit of
Krusell and Smith (1998) skip Level 2. These algorithms do not have a distribution object
on the grid which they could use to evaluate market clearing conditions. As a result, these
algorithms resort to updating both the distribution representation (specifically, its law of
motion) and general equilibrium prices in the outer fixed point of the algorithm.

Second, the original Krusell and Smith (1998) algorithm takes a particular distribution
representation (i.e. the aggregate capital stock) as given from the start. While the algorithm
features an outer fixed point, it uses this outer loop to update the law of motion of the
distribution approximation (i.e. the law of motion of capital) and general equilibrium
prices. My algorithm, on the other hand, updates and improves on the distribution
approximation itself.

There have been several algorithms since Krusell and Smith (1998) that follow the
traditional moments-based approach but specify a “distribution selection function” or
“proxy distribution” to construct a distribution object on the grid from a given set of
moments. Important examples include Algan et al. (2008) and Reiter (2010). These
algorithms, like mine, use an outer loop to successively update and improve on the
distribution representation.

Grid construction. In Section 3.3, I discuss where and how in this algorithm I leverage
sparse grid adaptation. For the purposes of Section 2, it suffices to note that Levels 2
and 3 always take the grid as given. By contrast, whenever the outer fixed point in Level
1 is non-trivial, in the sense that there is some sequential updating on the distribution
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representation and n > 1, then the grid must necessarily be re-constructed in every outer
iteration.

To see this, consider the example where each outer iteration n adds one additional basis
function to the representation F(αt)(x) and, consequently, increases the dimensionality of
αt ∈ Rn by one. Since the αt constitute part of the aggregate state space of the approximate
economy, one dimension must correspondingly be added to the grid in each outer iteration.
In sum, my algorithm will generally reconstruct the grid after each outer iteration, but
then keep the grid fixed at the two lower levels.

2.1 Level 1: household problem

This subsection focuses on solving the Hamilton-Jacobi-Bellman (HJB) equation (2) associ-
ated with the household problem, where c, ι, s and m are given by equations (3) through
(6). The value function iteration algorithm I implement to do so corresponds to Level 1 of
my algorithm.

In this innermost fixed point, I solve equation (2) taking as given three kinds of objects:
(1) A possibly irregular grid G constructed over the household state space (x, Z, α). The
grid G is only updated on the outer Level 3 of the algorithm. (2) All general equilibrium
objects that are taken as given by the household. Specifically, I take as given the set of
functions r(Γ), ... These mappings are updated on Level 2 of the algorithm. (3) Finally, I
take as given the form of the distribution representation, F(·), which is again only updated
on Level 3.

Equation (2) is a time-independent parabolic partial differential equation (PDE) in
3 + d + N dimensions. I solve it using a method that is closely related to and builds on the
seminal continuous-time value function iteration algorithm developed by Achdou et al.
(2015). Many key features of their algorithm directly carry over to my setting. In particular,
I also use finite-difference methods to discretize the PDE, I construct a time-marching
fixed point, I use a semi-implicit scheme for updating the value function at each time step,
and I use the upwinding scheme discussed in Kaplan et al. (2018) for the policy functions.
Together, these algorithmic choices imply a discretization of equation (2) which takes the
form

Vi+1 −Vi

∆
+ (ρ + ζ)Vi+1 = ui +

(
DS

k Vi+1)mi +
(

DS
a Vi+1)si +

(
DS

z Vi+1)µz (13)

+
(

DS
ZVi+1)µZ +

1
2

σT
Z
(

DS
ZZVi+1)σZ +

(
DS

αVi+1)µi
α

where the i superscript denotes the iteration of the time-marching fixed point. Time-
marching is a commonly used method to solve time-independent parabolic PDEs. See
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for example LeVeque (2007). As explained in the Achdou et al. (2015) Online Appendix,
this algorithm is semi-implicit because the update Vi+1 is defined implicitly by equation
(13). It is semi- rather than fully implicit because we use the value function of the current
iteration Vi to compute the policy functions, which is why ui, si, mi and µi

α are denoted
with i rather than i + 1 superscripts.

Operator notation. Equation (13) uses “operator notation” to denote partial derivatives or,
after discretization, finite difference operations. In other words, I use the flexible notation
DxV = Vx to denote the partial derivative of V with respect to x. Whenever V denotes a
function that takes as inputs continuous state variables, Dx denotes the functional operator
of differentiation. Whenever V refers to the discretized representation of the value function
on a grid, Dx denotes the associated finite difference operator. In particular, a discretized
finite difference operator Dx is simply a matrix that pre-multiplies the column vector V
when represented on a grid.

Using operator notation will be highly convenient for several reasons. Most impor-
tantly, solving equation (13) on a sparse or irregular grid will simply require substituting
the usual finite difference operators Dx, which are discussed in detail in Achdou et al.
(2015), with a sparse finite difference operator DS

x , whose construction we discuss in detail in
Schaab and Zhang (2020). The structure of the value function iteration algorithm otherwise
remains largely unchanged.5

Upwinding. As in Achdou et al. (2015) and Kaplan et al. (2018), I use an upwinding
scheme to compute mi and si, which is not made explicit in equation (13) for expositional
clarity. In fact, since the structure of the household’s portfolio problem in my model is
identical to Kaplan et al. (2018), I can also use the same upwinding scheme. Please refer to
that paper for additional details.6

Key differences from Achdou et al. (2015). My implementation of the household HJB
deviates from the algorithm developed in Achdou et al. (2015) in three key regards.

1. I implement equation (13) on a highly adapted sparse grid. For a detailed and
self-contained discussion, please see Schaab and Zhang (2020). At a high level, the
main practical difference when solving differential equations on irregular grids is
that sparse finite difference operators must be used in order to achieve a consistent

5When computed on a dense grid, the two finite difference operators coincide, with Dx = DS
x .

6The choice of upwinding scheme is largely orthogonal to issues arising from the use of adaptive sparse
grid methods when implementing equation (13). In particular, the main departure from Kaplan et al. (2018)
is that we again have to use the sparse finite difference operator DS

x rather than Dx when computing the
upwinding solutions for mi and si.
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discretization scheme for the underlying differential equation. Using the usual finite
difference operators associated with dense grids, as in Achdou et al. (2015), would
not lead to a consistent discretization in the sense that the time-marching fixed point
in equation (13) would not converge to the true V. However, the construction and
use of the appropriate operators is largely modular with respect to the rest of the
algorithm. That is, the sparse finite difference operators DS

x can be constructed
independently and outside of the value function iteration algorithm.

2. I implement an “extended VFI” that internally solves for the consistent law of motion
µα. In this sense, µi

α is updated in each iteration of the time-marching scheme.
In particular, the fixed point in (13) implies that when convergence is reached in
Vi+1 −Vi, the associated µi

α then automatically corresponds to a consistent forecast
of the law of motion of α.7

3. I solve a fully recursive equilibrium of my model, adopting a state-space rather than
a sequence-space representation. Equation (13) implements the stationary household
value function that fully internalizes time variation in the aggregate state of the
economy (Z, α). In particular, the second row of terms in equation (13) captures the
effect of an expected change in the economy’s aggregate state on the household value
function. Both Achdou et al. (2015) and Kaplan et al. (2018) solve the household
problem using a sequence-space representation.

Linear system. The discretized time-marching scheme in (13) gives rise to a linear system
of equations that can be solved to obtain the update Vi+1. This linear system takes the
form

AiVi+1 = Bi. (14)

Letting J denote the number of grid points, Ai is a J × J matrix and

Bi =
1
∆

Vi + ui

a J × 1 column vector.
The matrix Ai represents a discretized (composite) functional operator given by

Ai =

(
1
∆
+ ζ

)
I + ρ−

(
miDS

k + siDS
a + µzDS

z + µZDS
Z +

1
2

σT
Z DS

ZZσZ + µi
αDS

α

)
, (15)

where I is a J × J diagonal matrix of 1s. It is now evident why expressing (13) using
operator notation is highly convenient: We can construct Ai by directly summing the

7Ahn et al. (2017) solve a similarly structured VFI.

14



vector-matrix products on the RHS. In particular, each sparse finite difference operator DS
x

is only constructed once ex ante.8 The terms associated with exogenous driving processes
(µzDS

z , µZDS
Z, and 1

2 σT
Z DS

ZZσZ) similarly don’t change over the course of the value function
iteration and can be computed ex ante. In each iteration i, we are therefore left with
computing the policy functions (ui, mi and si), updating the law of motion µi

α (discussed
below), and finally computing and summing the vector-matrix products in (15).

In Schaab and Zhang (2020), we show how to program a readily computable function
Ξ that takes as its only inputs the drift and volatility coefficients of each state variable (i.e.
a set of column-vectors) and outputs the matrix Ai. For my two-asset HANK model, this
implies

Ξ : {s, m, µz, µZ, σZ, µα} 7→ A.

What is particularly nice is that the structure of Ξ is so general that it can be applied to
every HJB equation we have thus far come across in economics. This is largely due to the
fact that the operators DS

x can be computed entirely independently from the details of the
economic application.

Krylov subspace methods. Commonly used linear equations solvers quickly falter when
confronted with the system (14) in practice for two reasons. First, the grids on which I
solve V quickly grow large because, in practice, the household problem has 8 to 10 state
variables when we use 3 to 5 dimensions of distribution representation.

Second, the resulting matrix Ai is no longer as “nice” (i.e. highly sparse and symmetric)
as in the context of dense grids. This is illustrated in Figure 1. I use Matlab’s “spy( )”
command to visualize the sparsity structure of A. For illustration, I solve the household
value function for the model’s stationary equilibrium on two different grids. Panel (a) uses
a fine, dense grid while panel (b) uses an adapted sparse grid. The adapted sparse grid
features significantly fewer grid points (around 340 in total over the (a, k) dimensions) than
the dense grid (around 4, 200 in total over the (a, k) dimensions).9 However, this comes at
the cost of a more complex sparsity structure in A. Intuitively, this happens because sparse
finite difference operators do not simply “look left and right” but rather draw information
from many surrounding grid points. While this is one notable disadvantage of using
adaptive sparse grid methods, the associated performance gains typically dominate.

In practice, therefore, I resort to using Krylov subspace methods. In particular, the

8This is in stark contrast to Achdou et al. (2015). They manually construct the vector-matrix products
µxDx from scratch in each iteration. While this is feasible (and sufficiently fast) for dense grids, leveraging
the observation that the finite-difference operators Dx can be constructed independently is important in the
context of irregular grids.

9The associated two-dimensional grid is illustrated in Figure 4.
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Figure 1: Sparsity structure of functional operator A
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Notes. This figure uses Matlab’s spy( ) command to plot the sparsity structure of the matrix A. Each dot

corresponds to a nonzero value. Panels (a) and (b) plot the A matrices associated with solutions of the

(steady state) household value function for two different grids. Panel (a) uses a fine, dense grid. Panel (b)

uses a highly adapted sparse grid. The solid diagonal lines in the upper right and lower left quadrants of

these plots represent transitions across employment states. The points in the upper left and lower right

quadrants represent transitions in portfolio positions.

asymmetry of Ai necessitates the use of the generalized minimal residual (GMRES) method.10

For a superb introduction to iterative methods see Demmel (1997). The GMRES algorithm
was originally developed in Saad and Schultz (1986).11

Solving for µi
α. Proposition 3 in the main text allows us to nest the computation of the

consistent law of motion dα within the household VFI. I discuss there that the formulas
for µα(Γ) and σα(Γ) generically depend only on the household policy functions, as well as
other objects that are taken as given and held fixed over the course of the household VFI.

10Ahn et al. (2017) also leverage Krylov subspace methods. Since they work on dense grids, much of
the symmetry in Ai is preserved in their applications, which allows them to use a method that exploits this
symmetry.

11When implementing this VFI in Matlab, GMRES typically starts outperforming the standard “mldivide”
solver when the size of the grid J exceeds between 5,000 and 10,000 grid points.
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Value function iteration i, therefore, starts with a guess Vi and computes the policy
functions ci, ιi, si and mi. At this stage, the only object left unspecified in equations (13)
and (15) is µi

α (in my baseline model, σα = 0). However, with both the policy functions for
iteration i and the sparse finite difference operators in hand, µi

α can be readily computed
using the formula from Proposition 3.

This approach shifts “complexity” from the outer fixed point (Level 3) to the inner
fixed point (Level 1), which is desirable in many but not all applications. The traditional
approach in the spirit of Krusell and Smith (1998) iterates on µα in the outermost fixed
point by necessity because moments-based methods cannot compute µα as part of an
extended household VFI. The traditional approach has the advantage of a more stable
value function iteration step. This comes at the cost of requiring extra outer iterations in
which the model is solved and simulated in order to find an update for µα.

In practice, leveraging the extended VFI structure to dispense with outer iterations
is highly effective in simple models like the Krusell and Smith (1998) model or even a
one-asset HANK model. In the context of more complex models like this paper’s two-asset
HANK model, solving for the laws of motion of all αt inside the household VFI can lead
to stability problems. Intuitively, there are more objects that change from one iteration to
the next, which may slow and even thwart convergence in Vi. Concretely, this oftentimes
comes at the cost of requiring a much smaller ∆ and, consequently, many more iterations
until Vi converges. Which side of this tradeoff dominates is not clear a priori and should,
in practice, be weighed in the context of an algorithm’s other bottlenecks.12

2.2 Level 2: general equilibrium prices and market clearing

I use a quasi-Newton algorithm to solve for the set of prices that clears markets in general
equilibrium. This requires the construction of an objective function

γ : price guesses 7→ market clearing gap

that associates an error metric with any potential price guess. It is most natural to derive
this error metric from the “gap” in market clearing conditions implied by a particular price
guess. After defining this function γ, we can simply feed it into a non-linear equation
solver. I will provide additional details on this procedure in two steps. First, I discuss the
construction of γ. Second, I sketch the quasi-Newton algorithm I use in practice.

12In practice, I implement my algorithm with a toggle that allows me to switch between these two
approaches seamlessly. When solving the two-asset HANK model, the ∆ required for VFI convergence when
computing µα internally can be smaller by a factor of 100 or more.
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2.2.1 Market clearing

Denote the number of discretized aggregate states or grid points by Jagg. To implement a
Newton solver, the function γ must be of the form

γ : Rk×Jagg → Rk×Jagg

where k denotes the number of prices or aggregates that we need to solve for across the Jagg

aggregate states. Since Newton methods require the construction of the Jacobian matrix
associated with γ, we naturally want k to be as small as possible to optimize performance.

My strategy will be to rearrange and reduce the macro block equations summarized
in Section 1.4 so that I can directly compute all prices in terms of the smallest possible
number of guesses. Concretely, I have to guess the four functions

{Y, w, Q, π}(Γ)

but can then compute all remaining GE objects using the equations from Section 1.4,
including the relevant market clearing gap which becomes the output of γ(·).13 For
completeness, I will restate the relevant equations in the order I use them in practice. In
the baseline model, I set G(Γ) = 0. Given Y(Γ), w(Γ), q(Γ) and π(Γ), as well as K(Γ), A(Γ)
and U(Γ) which can be computed directly by evaluating F(α) on the grid, we have

L =

(
YKβ−1

) 1
β

H =
L

1−U

rk =
1− β

β
w

L
K

i = max
{

r∗ + π̄ + λππ + λY log
(

Y
Y∗

)
, 0
}

r = i− π

mc =
1

ββ(1− β)1−β

(
rk
)1−β(

w
)β

Π = (1−mc)Y

13The present discussion applies to the current baseline model which takes the limit as wages become
fully flexible, so that only goods prices are sticky. When both wages and prices are sticky, w becomes an
additional state variable and the vector of price guesses must also include πw(Γ).
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ΠQ = qI − I −Φ
(

I
K

)
K

τlump = Π + τlabwL− τUIU − rBG.

Given our price guess, we have now computed all aggregate objects on the grid that
are required to solve the household problem and obtain the policy functions c(·) and ι(·),
which lets us aggregate and compute C(Γ), I(Γ) and Ψ(Γ). The first three out of four
market clearing gaps can now be computed for each of the Jagg aggregate states Γ,

χY = Y− C− I −Φ−Ψ

χw = Hη − εw − 1
εw (1− τlab)w

∫
zc(x)−γF(α)dx

χq = q− 1−Φ′
(

1
K

∫
ι(x)F(α)(x)dx

)
.

Notice that, in the limit with flexible wages, χw corresponds to the optimality condition of
the union which can set wages directly in the absence of adjustment costs. When wages
are sticky, on the other hand, we compute the union problem and define an error metric
for wage inflation much like the error metric for price inflation, χπ, defined below.

The fourth and final market clearing gap comes from the firm problem. I solve the firm
problem to obtain the policy function π̃( p̃, Γ). Since we know that, to sustain a symmetric
equilibrium, relative price inflation must be 0 when p̃ = 1, we can use a projection to
compute

χπ = π̃(1, Γ)

for all aggregate states Γ.
Putting everything together, our function becomes

γ : {Y, w, q, π}(Γ) 7→ {χY, χw, χq, χπ}(Γ),

which we can now readily plug into any non-linear equation solver.

Importance of grid-based distribution representation. Unlike in the traditional Krusell
and Smith (1998) algorithm, my approximation Fn(α)(x) = g(x) implies that I can readily
compute the cross-sectional distribution associated with approximate economy n on the
grid. This is at the heart of everything discussed in Section 2.2. Without being able to use
such a grid-based distribution object, I could not evaluate market clearing conditions or,
consequently, solve for prices on the grid as discussed above.

2.2.2 A flexible quasi-Newton solver

In progress and coming soon.
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2.3 Level 3: distribution representation

As discussed in the main text and appendix of the paper, my algorithm admits both
parametric and non-parametric variants. The parametric algorithm chooses F(·) from a
prespecified parametric family. In practice, however, I use a non-parametric algorithm to
solve the two-asset HANK model. Therefore, I discuss the non-parametric approach first
in this subsection. In the next subsection, I further elaborate on the parametric variant.

The method I use in practice focuses on approximations of the cross-sectional distri-
bution that use basis function representations for which F(·) is affine in αt ∈ RN. That
is,

FN(αt)(x) = C(x) +
N

∑
n=1

Tn(x)αn
t = C(x) + T(x)αt, (16)

where T(x) and αt stack the Tn and αn, respectively. This form allows for a constant
term C(x) which I typically take to be the cross-sectional distribution associated with the
deterministic steady state of the model. That is, C(x) = g0(x) = limσρ→0 g(x; σρ).

The primary objective of my algorithm’s outer fixed point (Level 3) is to find a set of
basis functions {Tn} for which the associated approximate economy is sufficiently close to
the true model.14 To formalize this approach, I proceed in three steps. First, I define and
discuss an appropriate error metric that can guide the search for efficient {Tn}. Second,
I show how to write an objective function that computes this error metric for any given
distribution representation F(α). Third, I formally write down the estimation problem of
choosing Tn+1 to minimize our error in iteration n, and I discuss how to implement the
associated fixed point in practice.

Forecast errors. In outer iteration n, Level 1 and Level 2 of my algorithm compute the
solution of approximate economy n where the cross-sectional distribution is given by
Fn(α)(x). We want to ask how far approximate economy n is from the true solution of
the model. What is the source of potential discrepancy in this comparison based on the
definition of recursive equilibrium in Section 1.6? The VFI on Level 1 ensures that the
optimality conditions for household behavior are respected. And solving the macro block

14As I discussed in Section 2.1, Proposition 3 of the main text can be used to compute the consistent law of
motion dα as part of the household value function iteration step. However, this may not always be optimal
because doing so takes its toll on the convergence properties of the VFI. Alternatively, we can compute the
laws of motion for some but not all α inside the household VFI. The laws of motion of the remaining α are
then updated in the outer fixed point, at the same time as T(x) is updated. Indeed, this is the traditional
approach of finding the consistent law of motion dα: After solving and simulating the model for a given
Fn(·), we can estimate the law of motion implied by the simulated cross-sectional distribution and update
dα accordingly. For expositional clarity, I focus the present discussion around the case where all elements of
dα are computed using the formulas of Proposition 3.
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on Level 2 implies that all markets clear in general equilibrium, respecting household
behavior at the micro level. By construction, therefore, any residual discrepancy between
approximate economy n and the true model must stem from remaining error in the
distribution representation, Fn(α)(x) ≈ g(x).

To check how well Fn(α)(x) approximates g(x), we would ideally like to simulate both
approximate economy n and the true model for the same draw of exogenous shocks, and
then directly compare the paths of the simulated cross-sectional distributions. Consider a
simulation over time horizon t ∈ [0, T], then we would ideally like to construct an error
metric ∣∣∣∣∣∣ Fn(αt)(x)− gtrue

t (x)
∣∣∣∣∣∣
(t,x)∈R×Rd

and update the distribution representation Fn+1 to account for residual error in this
approximation.

While we cannot, of course, directly compute and simulate the true model, we can
construct a fixed point much in this spirit, which, upon convergence, would imply that
all agents in the economy behave according to consistent forecasts of the cross-sectional
distribution. Consider again a solution of approximate economy n. For a given draw of
the aggregate shock sequence, {ρt}, agents behave as if the cross-sectional distribution
evolved according to Fn(αt)(x), where dαt = µα(Γt)dt + σα(Γt)dBt. We can therefore
directly compute household forecasts, by simply time-integrating the paths of all aggregate
state variables. In the baseline model where Γ = (ρ, α), this simply requires integrating

αt = α0 +
∫ t

0
µα(ρs, αs)ds +

∫ t

0
σα(ρs, αs)dBs

since we take {ρt} as given exogenously. This yields the time series {αt}[0,T] and, therefore,
the associated distribution forecast {Fn(αt)(x)}[0,T]. And with time series for all aggregate
state variables in hand, we can readily compute the time series of all other macroeconomic
aggregates using the functions we computed on Level 2 to clear markets. For example,
{Ylom

t }[0,T] = {Y(ρlom
t , αlom

t )}[0,T]. I denote the time series obtained from such a simulation
with the supercript “lom” for (l)aw (o)f (m)otion. In particular, with time step dt the
implied distribution forecast evolves according to

gn,lom
t+dt =glom

t +

(
Fn

α (α
lom
t )µα(ρt, αlom

t ) +
1
2

σα(ρt, αlom
t )TFn

αα(α
lom
t )σα(ρt, αlom

t )

)
dt (17)

+ Fn
α (α

lom
t )σα(ρt, αlom

t )
√

dt εt = Fn(αlom
t+dt),

where {εt} is the shock sequence draw.
Alternatively, we can ask how the cross-sectional distribution would evolve between

time steps t and t + dt if, instead, we directly simulated household behavior at time t and
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then computed gt+dt by aggregating from the micro level. This idea is commonly used to
compare the fit of heterogeneous-agent models in the literature. See for example Den Haan
(2010). In particular, this approach is akin to a direct Monte Carlo simulation of household
behavior at the micro level.

Following this approach, we can construct an alternative simulation which I denote
using a “sim” superscript as follows: First, we initialize the economy at the same point and
use the same draw of exogenous shocks. Second, at time t, we simulate household behavior
at the micro level and update the cross-sectional distribution accordingly. Importantly,
household behavior is still computed as if households believed the future evolution of the
economy to follow the law of motion dαt. This is what makes this approach feasible. Third,
while beliefs about the future remain as in the “lom” simulation, the macro block must be
recomputed to find the prices that clear all markets today, using the new cross-sectional
distribution gn,sim

t to evaluate market clearing conditions. Ensuring market clearing in this
way is, of course, necessary to obtain a consistent solution.

Consider a fixed point that converges in the sense that, for n sufficiently large, the gap∣∣∣∣∣∣gn,lom
t (x)− gn,sim

t (x)
∣∣∣∣∣∣
(t,x)∈R×Rd

becomes sufficiently small. What would be the significance of convergence in this sense?
In this case, approximate economy n is solved with agents behaving according to beliefs
that, ex post, coincide sufficiently accurately with the actually realized evolution of the
economy. We now have a solution of the model where (i) agents behave optimally given
beliefs, (ii) all markets clear, and (iii) beliefs are sufficiently consistent with the true law of
motion of the economy, thus satisfying our definition of a recursive equilibrium.

Computing forecast errors. How is the residual forecast error |gn,lom
t (x)− gn,sim

t (x)| com-
puted in practice? gn,lom

t can be simulated straightforwardly and very cheaply by using
equation (17).

In discrete time, Young (2010) discusses how to correctly simulate the cross-sectional
distribution gn,sim

t via aggregation from simulated behavior at the micro level. A key
observation in my context is that time-integration of the Kolmogorov forward equation is
the proper continuous-time analog to the Young (2010) method.

In order to use the Kolmogorov forward equation to compute an update gn,sim
t+dt , we

simply need to compute household policy functions at time t and aggregate over those
using the current cross-sectional distribution gn,sim

t . Time step t of this simulation method
is therefore structured as follows. At time t, the economy is in aggregate state Γn,sim

t .

(i) I start by projecting the household value function of approximate economy n onto the
realized aggregate state. This yields a function V(x, Γn,sim

t ) : R3 → R which encodes
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household beliefs about the evolution of the economy’s aggregate state starting from
Γn,sim

t .

(ii) Next, I solve the non-linear macro block, following the procedure of Section 2.2
but using the simulated cross-sectional distribution gn,sim

t . The policy functions of
households, firms and unions must be recomputed to be consistent with these new
prices. In particular, this is done holding beliefs fixed, which in the context of the
household problem corresponds to holding V(x, Γn,sim

t ) fixed.

(iii) Finally, I use household policy functions, recomputed at the new prices, and plug
these into the Kolmogorov forward equation to update the cross-sectional distribu-
tion and obtain gsim

t+dt.

Step (ii) of this procedure is highly time-consuming because a non-linear equation solver
must be employed to clear markets in every time step of every simulation.

The cost of simulation. In practice, the above-described simulation step can easily account
for the lion’s share of overall computation time, largely because the non-linear macro block
must be solved at every time step, of which there are thousands per simulation. Several
commonly used tricks, such as efficiently carrying over price guesses from one simulation
to the next, can result in substantial performance gains.

The most effective method to speed up the simulation step, from my experience, is to
simulate macroeconomic aggregates and the cross-sectional distribution on two different
time grids.

Integrating the Kolmogorov forward equation to obtain an update for the cross-
sectional distribution, gsim

t+dt, typically requires a very fine time grid. To illustrate this
point, consider households with liquid asset position â, and assume that these households’
optimal savings decision is s(â, ·). Households therefore transition out of liquid asset
position â at rate s(â, ·)gt(â, ·). I abstract from offsetting forces for the purpose of illus-
tration. If the discretized time step dt is too large, then the cumulative flow away from
â over the course of the time step, given by s(â, ·)gt(â, ·)dt, may be larger than the mass
of households initially at â. This happens because the flow rate s(â, ·)gt(â, ·) is held fixed
over the course of a discretized time step. In continuous time, on the other hand, this flow
rate is continuously adjusted so that the mass of households at any point in the state space
can never become negative. In practice, the algorithm consistently breaks as soon as gsim

t+dt
becomes negative at any point in the state space. Therefore, to prevent this, the discretized
time step dt must be sufficiently small.

I develop an adaptive algorithm that coarsens or extends the time grid used for inte-
grating the Kolmogorov forward equation relative to the time grid used for simulating
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macroeconomic aggregates whenever gsim
t+dt becomes negative. In practice, I run the simu-

lation of macroeconomic aggregates on a grid with 2,000 time steps, representing 1,000
quarters. This is the time grid on which the non-linear macro block is solved. Reducing
the number of time steps in this grid can therefore lead to great performance gains.

On the other hand, the grid used for integrating the Kolmogorov forward equation
typically has up to 20,000 or more time steps. This grid is adaptively adjusted over the
course of the algorithm. Updating gn,sim is near costless. Consequently, refining this grid
has hardly any impact on the runtime of the simulation step.15

Updating Fn+1 to minimize forecast errors. Having first solved approximate economy n
and then simulated it to obtain a time series of forecast errors associated with gn,lom

t (x)−
gn,sim

t (x), updating Fn+1 remains as the last step of outer iteration n. Concretely, this means
finding a basis function Tn+1(x) and using it in (16) to update Fn+1.

The key idea I employ here is that, for any candidate T̃n+1(x), we can cheaply recom-
pute the associated F̃n+1(αlom

t ) = g̃n+1,lom
t leveraging Proposition 3 and the integration

formula (17).
Formally, I set up the estimation problem

min
Tn+1(x), αt

∣∣∣∣∣∣∣∣gn,sim
t (x)− g0(x)−

n+1

∑
k=1

Tk(x)αk
t

∣∣∣∣∣∣∣∣
L2(t×x)

(18)

which takes as given g0(x) and Tk(x) for k ≤ n. Intuitively, the goal of this estimation
problem is to find the new basis function Tn+1(x) such that, when we properly recompute
all αt appropriately, we minimize the residual forecast error relative to gn,sim

t . Lemma 11 of
Appendix B.6 in the main text solves a variant of this estimation problem. In particular,
we get

αt =
(

T(x)′T(x)
)−1

T(x)′
[

gn,sim
t (x)− g0(x)

]
. (19)

And this solution is, of course, consistent with Proposition 3, which can be seen quickly
by taking the derivative d

dt in equation (19). Of course, approximate economy n + 1 is not
actually computed while searching for the efficient Tn+1. Instead, gn,sim

t is used directly
here as a proxy, even though we would have to recompute and use gn+1,lom

t to exactly
reflect what household believes would be under Fn+1. Subject to this caveat, the estimation
problem (18) is therefore set up to find the basis function Tn+1(x) that minimizes the
remaining forecast error if household forecasts were recomputed under the resulting, more
flexible representation Fn+1(α)(x).

15To generate my results, I typically run the entire simulation step one last time on a much finer time grid.
(For example, to produce the out-of-sample forecast errors in Figure 3.)
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2.3.1 Alternatives to the affine structure

The affine structure (16) is very flexible. However, we also have the prior intuition, in the
spirit of Krusell and Smith (1998), that keeping track of the aggregate capital stock (as a
moment of the distribution) directly might be a highly efficient use of one dimension of
distribution representation.

In the context of a representation gt(x) ≈ F(αt)(x), it is not at all straightforward
to let one dimension of F(αt) correspond to a particular moment of the distribution. To
circumvent this issue, I develop a variant of my algorithm that first normalizes gt(x) by the
aggregate capital stock, then uses capital as the first dimension of the distribution represen-
tation, and finally constructs F(αt)(x), using the remaining dimensions, to approximate
the normalized distribution instead.

Formally, let ωt(a, k̃, z) denote the cross-sectional distribution over liquid asset posi-
tions a, the capital share k̃ owned by the household, and employment state z. The resulting
capital share distribution ωt(a, k̃, z) is a direct transformation of gt(a, k, z) given by

ωt

(
a,

k
Kt

, z
)
= gt(a, k, z),

where k̃ = k/Kt is the capital share. In this variant of the algorithm, I add Kt explicitly as
an aggregate state variable, and then use the αt to approximate ωt.

2.4 Choosing F(·) from a parametric family

While the non-parametric algorithm discussed so far is particularly efficient to approximate
gt(x) when x is higher-dimensional, a natural alternative approach is to pick F(·) directly
from a parametric family. This is the approach I take when solving simpler models like a
one-asset HANK model or the Krusell and Smith (1998) model, which I have solved with a
F(α) representation consisting of over 20 Chebyshev polynomials.

In particular, when F(·) is chosen ex ante and not updated, the outer fixed point of
my algorithm (Level 3) collapses to a single iteration. More surprisingly yet, no simulation
step is required at any point in the resulting parametric algorithm.

For illustration, consider the concrete example where x = x is one-dimensional and
we decide ex ante to represent the cross-sectional distribution using 10 Chebyshev polyno-
mials. That is, we set F1(αt)(x) = g0(x) + ∑10

n=1 Tn(x)αn
t , where Tn is the nth Chebyshev

polynomial. Recall that Proposition 3 allows us to compute the internally consistent law
of motion for αt as part of the household VFI. Therefore, all we need to do is run Level
1 and Level 2 of the algorithm once. This yields a solution of the approximate economy
that corresponds to the desired Chebyshev polynomial approximation. In particular, all
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markets clear, agents behave optimally under the belief that the cross-sectional distribution
evolves according to dαt, and dαt is, in fact, the law of motion implied by the approximate
economy’s solution. No simulation step is required.

For models like Krusell and Smith (1998), where no general equilibrium prices must
be found to clear markets, not even Level 2 of the algorithm is necessary. Indeed, a
parametric variant of my algorithm solves the Krusell and Smith (1998) model in a single
value function iteration step!

3 Algorithm Performance and Implementation Details

In this section, I discuss the performance of the algorithm. I also provide additional details
on how to implement the algorithm of Section 3 in practice.

3.1 Algorithm convergence

In practice, I use the non-parametric algorithm discussed in Section 2.3 to globally solve
the two-asset HANK model of my paper. For the main calibration, I work with distribution
representations with dimensionality between 3 and 5. In other words, in practice I use

FN(αt)(x) = g0(x) +
N

∑
n=1

Tn(x)αn
t

for N between 3 and 5. I discuss this basis function representation, as well as the construc-
tion of {Tn}, in detail in Section 2.3. This implies that the household problem has 8 to 10
state variables, while the firm and union problems both have 6 to 8 state variables.16

The first important question I want to address is whether this algorithm converges
as we increase N.17 Intuitively, convergence in this context means that household beliefs
about the evolution of the cross-sectional distribution in approximate economy N become
increasingly close to the actual evolution of the distribution when the economy is solved
and simulated under these beliefs.

One approach to evaluate the convergence properties of my algorithm is by looking
at households’ forecast errors across the sequence of approximate economies. I will
further discuss forecast errors in Section 3.2. An alternative and more illustrative approach
is to directly compare the model solutions across approximate economies. I take this

16These numbers correspond to the model used for the experiments of Section 5 in the main text. In
particular, the vector of state variables for the household problem is (a, k, z, ρ, σρ, α), where σρ is added for
the transmission mechanism analysis in Section 5.1.

17I am still working on analytical convergence results for certain classes of basis functions.
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approach in Figure 2, which compares solutions for output, YN(ρ, α), across a sequence
of approximate economies. If the distance between YN and YN+1 becomes increasingly
small as N becomes large, then, heuristically, we can say that the algorithm converges.
For purposes of illustration, Figure 2 plots output for all possible realizations of the
discount rate shock, ρ, while holding all other aggregate state variables associated with
the distribution representation, α, fixed at their mean, ᾱ. In other words, Figure 2 can also
be interpreted as plotting the on-impact response of output to a shock ρ if we initialize the
cross-sectional distribution at the risky steady state.

Figure 2 plots solutions for output across approximate economies with N, the max-
imum dimensionality of the distribution representation, ranging between 0 and 4. The
N = 0 case, for example, corresponds to a solution of the model under the restriction
that agents believe the cross-sectional distribution to be constant. As I discuss in detail
in Section 2.3, N = 1 is a special case. In the spirit of Krusell and Smith (1998), we have
a strong prior that the aggregate capital stock should already encapsulate much of the
information households would otherwise glean from the entire cross-sectional distribution.
I therefore follow Algan et al. (2008) to make the Krusell and Smith (1998) idea of directly
keeping track of the capital stock operational in my framework. See Section 2.3.1 for
details. The N = 1 case should therefore be interpreted as the analog of Krusell and Smith
(1998) in my framework. The remaining cases, N > 1, precisely follow the non-parametric
algorithm discussed in Section 2.3.18

Figure 2 suggests three noteworthy observations:

1. Approximate aggregation, in the sense of Krusell and Smith (1998), yields an accurate
description of aggregate behavior in the model during normal times. For N ≥ 1, the
solutions for output lie on top of one another for ρ > 0.025. In this part of the state
space, the economy is sufficiently far from the ZLB. Indeed, this finding suggests that
the Krusell and Smith (1998) algorithm would deliver a reasonably accurate global
solution of my two-asset HANK model in the absence of an occasionally binding
macro constraint. It is only for ρ sufficiently low that my algorithm yields results
that differ from the Krusell and Smith (1998) solution.

18In the current version of the paper, I work with distribution representations F(αt)(x) that effectively
hold unemployment fixed. Households have no reason to directly forecast the aggregate unemployment
rate because it does not directly affect them. Households care about employment transition rates, which are
a function of economic activity in this model rather than the aggregate level of unemployment. Conditional
on households correctly forecasting the set of relevant prices, therefore, this restriction would be entirely
innocuous. Indeed, I show below in Section 3.2 that my algorithm already implies accurate forecasts about
economic activity, which suggests that relaxing this restriction would have no substantial effect on household
behavior and, therefore, the rest of the model. That said, I am currently working on a solution of the model
that relaxes this assumption.
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Figure 2: Convergence of a sequence of approximate economies
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Notes. The figure displays a state space representation of output, YN(ρ, ᾱ), plotted against all possible

realizations of the discount rate shock, ρ, for a sequence of approximate economies indexed by N. I hold

fixed (or project) all other dimensions of the aggregate state space at their mean, ᾱ. The figure illustrates

visually that the sequence of approximate economies that I solve as part of my non-parametric algorithm

converges. The N = 0 case corresponds to the approximate economy where households believe the

cross-sectional distribution to be time-invariant. The N = 1 case corresponds, roughly speaking, to a

solution of my model under the Algan et al. (2008) algorithm with the aggregate capital stock used as the

only moment. The cases with N > 1 enlarge the distribution representation by using non-parametrically

estimated basis functions. The figure highlights that approximate aggregate holds roughly during “normal

times”: For ρ > 0.025 the economy is sufficiently far away from the ZLB that macroeconomic behavior

becomes linear. The N = 1 solution achieves a good fit, which can be seen from the coincidence of all lines

with N ≥ 1. Approximate aggregation fails badly during “crisis times”, however: As ρ falls, the N = 1

solution attains an increasingly bad fit.

2. A Krusell and Smith (1998) solution of my model, the N = 1 case, implies sub-
stantially dampened macro uncertainty during crises. Intuitively, the endogenous
volatility of output corresponds to the slope of the lines plotted in Figure 2, or
σY,t ∼ d

dρY(ρt, αt). My algorithm converges to a solution of the model in which
the sensitivity of economic activity to discount rate shocks (i.e. the slope of Y(ρ, ·))
is substantially larger close to and in the ZLB crisis region. This suggests that a
Krusell and Smith (1998) solution of the model would considerably under-predict
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the magnitude of endogenous uncertainty spikes during crises.

3. Figure 2 also suggests that the non-parametric algorithm converges - at least heuris-
tically. The distance between YN and YN+1 clearly decreases as N becomes larger.
In fact, around N = 3, the only visually noticable discrepancy occurs for the lowest
levels of ρ. This makes sense intuitively: We expect the largest degree of non-linearity
in the model’s aggregate behavior when the economy is in a deep recession. And
this is exactly the region of the state space where approximate aggregation fails most
obviously. These considerations suggest that, while the overall fit and convergence
of my algorithm at N = 4 may already be acceptable, we would require an even finer
distribution representation to increase the accuracy of forecasts in the crisis region.
Section 3.2 will reach a similar conclusion by looking directly at household forecast
errors in normal and crisis times.

3.2 Algorithm fit

The most commonly used quantitative metric to assess the fit of solution methods for
heterogeneous-agent macro models is the Den Haan (2010) metric. My implementation
of this error metric compares two different simulations of the model for 8,000 time steps.
The first simulation computes the evolution of the aggregate state directly from the law of
motion implied by the FN(αt)(x) distribution representation. This simulation is equiva-
lent to household forecasts because the household problem is solved with beliefs precisely
consistent with the same law of motion. I denote this simulated time series for output by
Ylom

t and for the cross-sectional distribution by glom
t = FN(αlom

t ).
The second simulation initializes the economy in the risky steady state. Instead of

using prices that are consistent with household forecasts, this simulation solves the non-
linear macro block of the model at every time step to find the prices that clear all markets.
These prices are then plugged into the household problem to compute policy functions.
The cross-sectional distribution is then updated by directly using and aggregating the
behavior of households at the micro level under the market-clearing set of prices. In
this sense, this simulation is akin to a Monte Carlo simulation of household behavior at
the micro level.19 The time series of the cross-sectional distribution obtained from this
simulation, gsim

t , represents in some sense the correct behavior of the model because we
ensure that markets clear in every time step. I denote the simulated time series for output
by Ysim

t .

19Indeed, the simulation algorithm I develop is the continuous-time analog of the Young (2010) method.
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Figure 3: Den Haan (2010) forecast accuracy metric
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Notes. This figure plots the time series for output from two distinct simulations of the model that use the

same draw of exogenous discount rate shocks. Both simulations initialize the economy in the risky steady

state and simulate over a horizon of 250 years with 8000 discretized time steps. In the first simulation (blue),

the non-linear macro block is solved at each time step to find the prices that clear markets. Household

behavior is then computed using these prices, and the cross-sectional distribution is updated by aggregating

household behavior from the micro level. In the second simulation (yellow), the evolution of both prices

and the cross-sectional distribution is evaluted directly from the law of motion implied by FN(αt). This

second simulation corresponds precisely to how households would forecast the economy to evolve in

response to the exogenously drawn shock series. The discrepancy between the blue and yellow lines

therefore directly represents household forecast errors.

The Den Haan (2010) metric is then formally defined as

εDH
Y = 100×max

t

∣∣∣ log Ysim
t − log Ylom

t

∣∣∣.
I illustrate the time series of household forecast error in Figure 3 by directly plotting Ysim

t
and Ylom

t for the same underlying draw of shocks. The Den Haan (2010) metric would
correspond to the maximum realization of the log difference between the blue line, Ysim

t ,
and yellow line, Ylom

t .
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Importantly, this exercise is done out of sample. That is, I first run the non-parametric
algorithm to find a distribution representation FN(αt) while holding fixed a given draw
of exogenous shocks from one outer iteration to the next. With a solution of the model
in hand, I then use a different draw of exogenous shocks for the simulations in Figure 3.
Similarly, household forecasts are made at the beginning of time, t = 0. That is, households
never condition their forecasts on any object associated with the simulation of gsim

t .
Figure 3 clearly illustrates that my solution method achieves a very good fit during

normal times but still implies meaningful forecast errors during deep recessions. Con-
cretely, when output is close to its median realization of 1.82, the blue and yellow lines
typically lie almost exactly on top of one another. Forecast errors even remain small during
moderate economic downturns. For example, consider the sample years 112 and 150. It
is only during the deepest and most protracted recessions in this sample that forecast
errors grow larger. This is, of course, consistent with my discussion of Figure 2: The
behavior of macroeconomic aggregates in my model is roughly linear during normal
times when the economy is sufficiently far from the ZLB. In this region of the state space,
lower-dimensional distribution representations already achieve a good fit because approx-
imate aggregation roughly holds. Closer to the crisis region, however, my model exhibits
substantially non-linear dynamics. This requires a higher-dimensional distribution repre-
sentation. While my method with N between 3 and 5 already achieves an improved fit
relative to lower-dimensional representations (also see Figure 2), it remains an ongoing
effort to further scale up the dimensionality of my solution and attain an even better
forecast accuracy in the crisis region.

3.3 Gains from sparse grid adaptation

As part of my solution method, three value function iteration algorithms – corresponding
to the household, firm and union problems – have to be implemented thousands of times.
A complete “production run” that solves all versions of my model that I use for analysis
and computes all my numerical results typically features hundreds of outer iterations
(Level 3). And within each outer iteration n, solving for general equilibrium prices (Level
2) requires successively implementing the household, firm and union problems many
times.20

20For example, model implementations that can be run on a personal workstation (in my case a 2019
MacBook Pro) will typically feature up to 100 aggregate states. This number can be considerably larger when
the code is run on a cluster. Constructing the Jacobian matrix for the quasi-Newton algorithm once requires
solving the household, firm and union VFIs as many times as there are aggregate states. My quasi-Newton
method reconstructs this Jacobian matrix only a fraction of the times that a standard Newton method would
require. Nonetheless, even a few dozen reconstructions of this matrix over the course of the entire production
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Figure 4: Gains from grid adaptation

(a) Dense grid (b) Adapted sparse grid

Notes. Panels (a) and (b) plot a dense grid and a highly adapted sparse grid over the two dimensions (a, k).

The adapted grid takes as its baseline the dense grid in panel (a) and removes grid points according to the

most stringent adaptation threshold value I use in practice. For illustration, no points are added that are not

already on the dense grid.

I leverage an adaptive sparse grid (ASG) toolbox for solving high-dimensional partial
differential equations which is developed in a separate paper (Schaab and Zhang, 2020).
Every value function iteration algorithm that is computed as part of my solution method
is implemented on a highly adapted sparse grid which features only a fraction of the grid
points that the associated dense grid would require. In this subsection, I provide some
implementation details in the context of my application. For additional details, please refer
to Schaab and Zhang (2020).

Idiosyncratc and aggregate states. When implementing a value function iteration algo-
rithm with grid adaptation, it is typically helpful to distinguish between idiosyncratic and
aggregate states. In a mathematical sense, an agent’s value function is likely to feature
significantly more concavity in an idiosyncratic dimension. Consequently, a much finer
grid structure is required in these dimensions.

For several technical reasons that follow from this distinction, the idiosyncratic and
aggregate dimensions of the grid are typically adapted separately. The current version of
my algorithm simply adapts the idiosyncratic grid at the very beginning of the algorithm

run imply that all three VFIs must be solved thousands if not tens of thousands of times.
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Figure 5: Clustering aggregate states around cusp of ZLB

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Notes. The figure plots the unique values of ρ represented in a typical grid over the aggregate states (ρ, α).

Grid points are densely clustered around the cusp of the ZLB.

based on the household value function in the deterministic steady state. This takes place
even before outer iteration n = 1 is initialized. Figure 4 displays a pair of grids over the
two idiosyncratic dimensions (a, k). In particular, the grid displayed in panel (b) takes the
dense grid of panel (a) as its starting point and then removes points based on residual
concavity in the household value function. For illustration, panel (b) uses the largest
threshold value for grid point removal that I actually use in practice to solve the two-asset
HANK model. In other words, I use adapted sparse grids over idiosyncratic states that are
similar to but no sparser than the grid displayed in panel (b).

To construct the full grid, I use a tensor product that, roughly speaking, replicates
the fully adapted grid over the idiosyncratic states for each aggregate state. In practice, I
use no more than Jagg = 100 efficiently placed aggregate states when running the code
interactively on a personal workstation. This number can be larger when running the
code on a cluster. For example, Figure 5 plots the unique ρ values that are represented
in a typical grid. Grid points are clustered around the cusp of the ZLB. In practice, I am
currently not able to implement grids that are finer in the ρ dimension, with maximal
adaptation level l = 5, than the grid in Figure 5.

3.4 Being stingy with Jacobians

My algorithm never reconstructs a Jacobian matrix unless absolutely necessary. As dis-
cussed in Section 2.2, I use a flexible and robust quasi-Newton method that can recycle
previously computed Jacobians as a starting guess. In practice, this delivers substantial
performance gains relative to a standard Newton algorithm. I recycle previously computed
Jacobian matrices not only within the quasi-Newton step to solve for GE prices, but also
across outer iterations.

Similarly, across outer iterations, every object computed in iteration n is used as a
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starting guess for iteration n + 1. This includes general equilibrium prices, value functions,
simulated time series, Jacobians, and so on.

4 Transmission Decompositions with Aggregate Risk

Kaplan et al. (2018) have developed a seminal method for decomposing the transmission
mechanism of exogenous shocks in the context of heterogeneous-agent models solved
without aggregate risk and using a sequence-space representation. Their method has since
been employed by numerous papers.

As a distinct methodological contribution, my paper develops an analog to their
method in the context of models with aggregate risk that are solved globally using a
state-space representation.

4.1 Sequence-space representation

I start by showing that the method of Kaplan et al. (2018) can be applied literally to global
solutions of models with aggregate risk but then loses its practicality in the process.

To illustrate, consider the baseline model where the household problem state space
is given by (a, k, z, ρ, α). As before, the household problem gives rise to the policy func-
tion c(a, k, z, ρ, α). This policy function is expressed using the state-space representation
associated with the recursive equilibrium of the model.

The sequence-space representation is simply c̃t(a, k, z). Importantly, the aggregate
state variables are simply collapsed into the t subscript. That is,

c̃t(a, k, z) = c(a, k, z, ρt, αt).

The household problem only depends on t (or, for that matter, the aggregate state variables)
through the general equilibrium prices that households are exposed to, such as the interest
rate r(·) or the wage rate w(·). I use X to denote the set of all macroeconomic aggregates
that households are exposed to.

Consider household consumption at time 0 in response to a (possibly trivial) exoge-
nous perturbation {dρt}t≥0. Without aggregate uncertainty, in the spirit of Kaplan et al.
(2018), we can relate the dependence of c(·) on prices and aggregate states via

c̃0 = c̃
(

x0, {X(ρt, αt)}t≥0

)
= ĉ
(

x0, {ρt, αt}t≥0

)
.

A household’s consumption response at time t = 0 to the perturbation {dρt}t≥0 is a
function of the household’s initial idiosyncratic state, x0, and the future paths of all prices,
Xt = X(ρt, αt). Again, and importantly, this is the case without aggregate risk where ρt is
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not stochastic beyond this initial perturbation. Finally, the second equality maintains that
household consumption can be equivalently represented using the paths of state variables
ρt and αt. In conclusion, if we take partial derivatives here as in Kaplan et al. (2018), we
have a straightforward and direct mapping between dρt and the set of prices dXt.

Now consider the substantially more complicated case with aggregate risk. To do so
formally, we require additional notation and structure. Let Ω denote the probability space
induced by the Brownian motion Bt that is the model’s sole aggregate risk factor, with
ω ∈ Ω. The Brownian motion Bt induces a law over all possible sample paths {Xt(ω)}t≥0.
When we now change or “shock” the model’s initial condition, ρ0, then the probability
spaced Ω induced by B remains unchanged. However, the stochastic processes Xt or, put
differently, the mapping

ω 7→ {Xt(ω)}t≥0

changes. And it is this effect on the probability distribution of future prices which should
be captured by the transmission decomposition.

With aggregate risk, we now have

c̃0 = c̃
(

x0, {Xt(ω)}t≥0,ω∈Ω

)
= ĉ
(

x0, {ρt(ω), αt(ω)}t≥0,ω∈Ω

)
.

In the sequence-space framework, household consumption at time t = 0 again depends
on the aggregate state variables indirectly via prices. However, to consistently formulate
this sequence-space representation, the household’s initial consumption response now
depends on all possible sample paths for prices, i.e. {Xt(ω)}t≥0,ω∈Ω.21

This representation generalizes the sequence-space framework implicit in the Kaplan
et al. (2018) method. In their case, everything simplifies substantially, of course, because,
with no aggregate risk, the probability space Ω is degenerate, and exactly one of the
potential sample paths is realized almost surely. Therefore, policy functions in their setting
only take as an input the single sample path of prices that is realized almost surely in the
absence of aggregate risk.

Consider, finally, a variant of the partial derivative exercise used to decompose the
initial response dc0 when there is no aggregate risk. To simplify notation, assume that
there is only a single general equilibrium price to which households are exposed, so that a
perturbation dXt(ω) can be interpreted more easily as “the change in price”. We have

dc0

dρ0
=
∫ ∞

0

∫
Ω

∂c0

∂Xt(ω)

dXt(ω)

dρ0
dωdt,

where I now abuse notation by dropping the hat and tilde notation. The key takeaway
here is that, since a sequence-space representation of c0(·) depends on all possible sample

21In particular, c(·) is now a functional over the function space on prices Xt(ω) induced by B.
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paths of prices, computing the response dc0 similarly requires accounting for the partial
effects through all possible sample paths for price Xt(ω).

Put slightly differently, and using language that is potentially more familiar, Ω = {ω}
is the set of all possible histories. Without aggregate risk, a single history is realized almost
surely. Therefore, the integral

∫
Ω becomes degenerate (in the sense of a Dirac function on

the single history that is realized almost surely). This simplification is precisely what makes
sequence-space representations feasible and highly effective in the absence of aggregate
risk. With aggregate risk, however, the exercise in Kaplan et al. (2018), if taken literally,
would compute the partial transmission of dρ0 through every possible future history of the
single price Xt(ω). This makes the sequence-space representation less useful when there
is aggregate risk.

4.2 State-space representation

Consider again the perturbation dρ0. In the state-space representation of the model, dρ0

is simply a particular move across the aggregate state space. I now denote by X(ρ, α)

the relevant set of general equilibrium prices across a space (or grid) over (ρ, α). And a
solution of the model yields the policy function c(x, ρ, α).

With an eye towards implementation, let X = {Xi}i, so that we can refer to a particular
price Xi. Our goal is still, of course, to decompose the total behavioral response dc0/dρ0

into a set of partial channels working through the prices Xi. Taking inspiration from the
sequence-space representation, we can of course still write

dc0

dρ0
=
∫ ∞

0

∫
Ω

∑
i

∂c0

∂Xi
t(ω)

[
∂Xi

t(ω)

∂ρt(ω)

dρt(ω)

dρ0
+

∂Xi
t(ω)

∂αt(ω)

dαt(ω)

dρ0

]
dωdt.

Next, we map back to the state-space representation, where we simply have

∂Xi
t(ω)

∂ρt(ω)
= Xi

ρ(ρt(ω), αt(ω)).

That is, the partial response ρt(ω) has on Xi
t(ω) is simply the partial derivative of Xi(ρ, α)

with respect to ρ but evaluated at (ρt(ω), αt(ω)).
The key idea behind my method is that there is a very simple way to compute the

partial effect on c0 through all possible sample paths {Xi
t(ω)} for price i. This idea exploits

the fact that, under the state-space representation, X is simply a function of (ρ, α) and we
can “hold fixed” its response to dρ0 by projecting X(ρ, α) onto X(ρ̄, α). My approach still
delivers a comprehensive decomposition of dρ0’s transmission through each price, adding
together the effects of contemporaneous and future price changes (through the probability
measure).
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We can compute this partial effect in three steps. I will illustrate how to isolate the
partial effect of dρ0 through the price Xi. First, solve the model and obtain the prices
Xi(ρ, α). Second, recompute the household value function taking all prices X−i as given,
but imposing the projection

Xi(ρ, α) = Xi(ρ̄, α),

where ρ̄ is the value of ρ in the risky steady state. This is the key step. Intuitively, we
solve again for household behavior as if changes in ρ had the usual effect on all prices X−i

but no effect on Xi. Crucially, this corresponds to the partial derivatives above because,
by holding other prices X−i fixed at the true solution, we do not capture other general
equilibrium effects, which might pollute the partial decomposition.

Finally, we run two simulations of the model both initialized in the aggregate state (ρ̄+
dρ0, ᾱ). In the first case, we simulate household behavior at the micro level using the value
function from the unrestricted model solution and aggregate to find dC0, the on-impact
response of total consumption. In the second case, we use the modified household value
function to compute consumption behavior at the micro level such that households act as
though price Xi did not exhibit a direct response to the underlying shock. Aggregating
yields dCi

0. Lastly, we can directly compare

dC0 − dCi
0,

which represents the partial contribution to dC0 from households responding only and
directly to the price change dXi, in the sense {dXi

t(ω)}t≥0,ω∈Ω, induced by the exogenous
perturbation dρ0.

Notice that we can use this method for any aggregate variable that enters the house-
hold problem. In particular, we can let X0 denote the aggregate shock ρ itself, in which
case dC0− dC0

0 captures, in the language of Kaplan et al. (2018), the direct effect of the shock
dρ.
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